Advertisement

Increasing the Reliability of High Redundancy Actuators by Using Elements in Series and Parallel

  • Thomas Steffen
  • Frank Schiller
  • Michael Blum
  • Roger Dixon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5775)

Abstract

A high redundancy actuator (HRA) is composed of a high number of actuation elements, increasing both the travel and the force above the capability of an individual element. This provides inherent fault tolerance: if one of the elements fails, the capabilities of the actuator may be reduced, but it does not become dysfunctional. This paper analyses the likelihood of reductions in capabilities. The actuator is considered as a multi-state system, and the approach for k-out-of-n:G systems can be extended to cover the case of the HRA. The result is a probability distribution that quantifies the capability of the HRA. By comparing the distribution for different configurations, it is possible to identify the optimal configuration of an HRA for a given situation.

Keywords

high redundancy actuator (HRA) fault-tolerance fault mode and effect analysis (FMEA) multi-state system k-out-of-n:G system failure probability dependable systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanke, M., Thomsen, J.S.: Electrical steering of vehicles - fault-tolerant analysis and design. Microelectronics reliability 46, 1421–1432 (2006)CrossRefGoogle Scholar
  2. Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault- tolerant control. In: Proceedings of the American Control Conference 2001, vol. 4 (2001)Google Scholar
  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and faulttolerant control. Springer, New York (2006)zbMATHGoogle Scholar
  4. Du, X., Dixon, R., Goodall, R.M., Zolotas, A.C.: Assessment of strategies for control of high redundancy actuators. In: Proceedings of the ACTUATOR 2006 (2006)Google Scholar
  5. Du, X., Dixon, R., Goodall, R.M., Zolotas, A.C.: Lqg control for a high redundancy actuator. In: Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007)Google Scholar
  6. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge- based redundancy- a survey and some new results. Automatica 26(3), 459–474 (1990)CrossRefzbMATHGoogle Scholar
  7. Jenab, K., Dhillon, B.S.: Assessment of reversible multi-state k-out-of- n:g/f/load-sharing systems with ow-graph models. Reliability Engineering & System Safety 91(7), 765–771 (2006)CrossRefGoogle Scholar
  8. Oppenheimer, M.W., Doman, D.B.: Control allocation for overactuated systems. In: Proceedings of the 14th Mediteranean Conference on Control Automation (June 2006)Google Scholar
  9. Pham, H.: Handbook Of Reliability Engineering. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. Ribeiro, R.L.A., Jacobina, C.B., da Silva, E.R.C., Lima, A.M.N.: Faulttolerant voltage-fed pwm inverter ac motor drive systems. IEEE Transactions on Industrial Electronics 51(2), 439–446 (2004)CrossRefGoogle Scholar
  11. Steffen, T.: Control reconfiguration of dynamical systems: linear approaches and structural tests. LNCIS. Springer, New York (2005)Google Scholar
  12. Steffen, T., Davies, J., Dixon, R., Goodall, R.M., Zolotas, A.C.: Using a series of moving coils as a high redundancy actuator. In: Proceedings of the 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Steffen
    • 1
  • Frank Schiller
    • 2
  • Michael Blum
    • 2
  • Roger Dixon
    • 1
  1. 1.Control Systems Group, Department of Eletronic and Electrical EngineeringLoughborough UniversityLoughboroughUK
  2. 2.Institute of Information Technology in Mechanical EngineeringTechnische Universität MünchenGarching near MunichGermany

Personalised recommendations