Advertisement

Baseline Results for the ImageCLEF 2008 Medical Automatic Annotation Task in Comparison over the Years

  • Mark O. Güld
  • Petra Welter
  • Thomas M. Deserno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This work reports baseline results for the CLEF 2008 Medical Automatic Annotation Task (MAAT) by applying a classifier with a fixed parameter set to all tasks 2005 – 2008. A nearest-neighbor (NN) classifier is used, which uses a weighted combination of three distance and similarity measures operating on global image features: Scaled-down representations of the images are compared using models for the typical variability in the image data, mainly translation, local deformation, and radiation dose. In addition, a distance measure based on texture features is used. In 2008, the baseline classifier yields error scores of 170.34 and 182.77 for k = 1 and k = 5 when the full code is reported, which corresponds to error rates of 51.3% and 52.8% for 1-NN and 5-NN, respectively. Judging the relative increases of the number of classes and the error rates over the years, MAAT 2008 is estimated to be the most difficult in the four years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deselaers, T., Deserno, T.M.: Medical Image Annotation in ImageCLEF 2008. In: Peters, C., et al. (eds.) Evaluating Systems for Multilingual and Multimodal Information Access – 9th Workshop of the Cross-Language Evaluation Forum. LNCS, vol. 5706, pp. 523–530. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: Proceedings SPIE, vol. 5033, pp. 109–117 (2003)Google Scholar
  3. 3.
    Lehmann, T.M., Güld, M.O., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H., Wein, B.B.: Content-based image retrieval in medical applications. Methods of Information in Medicine 43(4), 354–361 (2004)Google Scholar
  4. 4.
    Güld, M.O., Thies, C., Fischer, B., Lehmann, T.M.: A generic concept for the implementation of medical image retrieval systems. International Journal of Medical Informatics 76(2-3), 252–259 (2007)CrossRefGoogle Scholar
  5. 5.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, B 8(6), 460–473 (1978)CrossRefGoogle Scholar
  6. 6.
    Keysers, D., Dahmen, J., Ney, H., Wein, B.B., Lehmann, T.M.: A statistical framework for model-based image retrieval in medical applications. Journal of Electronic Imaging 12(1), 59–68 (2003)CrossRefGoogle Scholar
  7. 7.
    Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 cross-language image retrieval track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Müller, H., Deselaers, T., Lehmann, T.M., Clough, P., Kim, E., Hersh, W.: Overview of the ImageCLEFmed 2006 medical retrieval and medical annotation tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 595–608. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Müller, H., Deselaers, T., Kim, E., Kalpathy-Cramer, J., Deserno, T.M., Clough, P., Hersh, W.: Overview of the ImageCLEFmed 2007 medical retrieval and annotation tasks. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 472–491. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mark O. Güld
    • 1
  • Petra Welter
    • 1
  • Thomas M. Deserno
    • 1
  1. 1.Department of Medical InformaticsRWTH Aachen UniversityAachenGermany

Personalised recommendations