Advertisement

Query and Document Expansion with Medical Subject Headings Terms at Medical Imageclef 2008

  • Julien Gobeill
  • Patrick Ruch
  • Xin Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

In this paper, we report on query and document expansion using Medical Subject Headings (MeSH) terms designed for medical ImageCLEF 2008. In this collection, MeSH terms describing an image could be obtained in two different ways: either being collected with the associated MEDLINE’s paper, or being extracted from the associated caption. We compared document expansion using both. From a baseline of 0.136 for Mean Average Precision (MAP), we reached a MAP of respectively 0.176 (+29%) with the first method, and 0.154 (+13%) with the second. In-depth analyses show how both strategies were beneficial, as they covered different aspects of the image. Finally, we combined them in order to produce a significantly better run (0.254 MAP, +86%). Combining the MeSH terms using both methods gives hence a better representation of the images, in order to perform document expansion.

Keywords

Cross-Language Image Retrieval Text Categorization Query Expansion Document Expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medicine - clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Gobeill, J., Müller, H., Rucj, P.: Query and Document Translation by Automatic Text Categorization: A Simple Approach to Establish a String Textual Baseline for ImageCLEFmed 2006. In: ImageCLEF Working Notes (2006)Google Scholar
  3. 3.
    Zhou, X., Gobeill, J., Ruch, P., Müller, H.: University and Hospitals of Geneva at ImageCLEF 2007. In: Zhou, X., Gobeill, J., Ruch, P., Muller, H. (eds.) ImageCLEF Working Notes (2007)Google Scholar
  4. 4.
    Diaz-Galiano, M.C., Garcia-Cumbreras, M.A., Mertin-Valdidia, M.T., Urena-Lopez, L.A., Montejo-Raez, A.: SINAI at ImageCLEFmed 2008. In: ImageCLEF Working Notes (2008)Google Scholar
  5. 5.
    Navarro, S., Munoz, R., Llopis, F.: A Multimodal Approach to the Medical Retrieval Task using IR-n. In: ImageCLEF Working Notes (2008)Google Scholar
  6. 6.
    Lana-Serrano, S., Villena-Roman, J., Gonzalez-Cristobal, J.C.: MIRACLE at ImageCLEF med 2008: Evaluating Strategies for Automatic Expansion. In: ImageCLEF Working Notes (2008)Google Scholar
  7. 7.
    Kahn, C., Thao Jr., C.: GoldMiner: a radiology image search engine. American Journal of Roentgenology, 1475–1478 (2007)Google Scholar
  8. 8.
  9. 9.
    Ruch, P.: Automatic Assignment of Biomedical Categories: Toward a Generic Approach. Bioinformatics 22(6), 658–664 (2006)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Medical Subject Headings trees, http://www.nlm.nih.gov/mesh/2008/MeSHtree.html
  12. 12.
    University and Hospitals of Geneva, http://www.natlang.hcuge.ch/Resources/easyIR.zip

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Julien Gobeill
    • 1
  • Patrick Ruch
    • 1
  • Xin Zhou
    • 1
  1. 1.Service d’Informatique MédicaleUniversity and Hospitals of GenevaGenèveSwitzerland

Personalised recommendations