Advertisement

Experiments in Calibration and Validation for Medical Content-Based Images Retrieval

  • Jose L. Delgado
  • Covadonga Rodrigo
  • Gonzalo León
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

We present a CBIR system (Content-based Image Retrieval). The system establishes a set of visual features which will be automatically generated. The sort of features is diverse and they are related to various concepts. After visual features calculation, a calibration process is performed whereby the system estimates the best weight for each feature. It uses a calibration algorithm (an iterative process) and a set of experiments, and the result is the influence of each feature in the main function that is used for the retrieval process. In image validation, the modifications to the main function are verified so as to ensure that the new function is better than the preceding one. Finally, the image retrieval process is performed according to the ImageCLEFmed rules, fully described in [2, 5]. The retrieval results have not been the expected ones, but they are a good starting for the future.

Keywords

CBIR calibration validation JAI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rahman, M.M., Sood, V., Desai, B.C., Bhattacharya, P.: Cindi at Image CLEF 2006. In: Image Retrieval & Annotation Tasks for the General Photographic and Medical Image Collections. Dept. of Computer Science & Software Engineering. Concordia University (2006)Google Scholar
  2. 2.
    Deselaers, T., Deserno, T.M.: Medical Image Annotation in Image CLEF 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 523–530. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Martín Rodríguez, F., Suárez López, F.J.: Identificación Dactilar Basada en Filtros de Gabor. Departamento de Teoría de la Señal y Comunicaciones. Universidad de VigoGoogle Scholar
  4. 4.
    Besançon, R., Mollet, C.: Using Text and Image Retrieval Systems: Lic2m Experiments at Image CLEF 2006. In: Grupo CEA-LIST/LI2CM en Fontenay-aux-Roses - CEDEX (2006)Google Scholar
  5. 5.
    León, G., Delgado, J.L., Rodrigo, C., López, F., Sama, V.: Automatic system for extraction of content-based characteristics from digital images. In: Working Notes of the 2008 CLEF Workshop, Aarhus, Denmark (September 2008)Google Scholar
  6. 6.
    Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 Cross-Language Image Retrieval Track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Sánchez Ávila, C., Sánchez-Reíllo, R.: Sistemas de Identificación Biométrica mediante Patrón de Iris utilizando Representación Multiescala e Información de Fase. (1) Dpto. de Matemática Aplicada a las Tecnologías de la Información. E.T.S.I. Telecomunicación – UPM (2) Dpto. de Ingeniería Eléctrica, Electrónica y Automática. Universidad Carlos III de Madrid (UC3M)Google Scholar
  8. 8.
    Lacoste, C., Lim, J., Wei, X., Raccoceanu, D., Le Thi Hoang, D., Teodorescu, R., Vuillemot, N.: Ipal knowledge-base medical image retrieval in ImageCLEFMed 2006. IPAL French-Singaporean Joint Lab (2006)Google Scholar
  9. 9.
    Casimage Corpus, http://pubimage.hcuge.ch
  10. 10.
    GIFT – The GNU Image-Finding Tool, http://www.gnu.org/software/gift/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jose L. Delgado
    • 1
  • Covadonga Rodrigo
    • 1
  • Gonzalo León
    • 1
  1. 1.Dpto. Lenguajes y Sistemas Informáticos - E.T.S.I. Informática - U.N.E.D.Spain

Personalised recommendations