Advertisement

An SVM Confidence-Based Approach to Medical Image Annotation

  • Tatiana Tommasi
  • Francesco Orabona
  • Barbara Caputo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper presents the algorithms and results of the “idiap” team participation to the ImageCLEFmed annotation task in 2008. On the basis of our successful experience in 2007 we decided to integrate two different local structural and textural descriptors. Cues are combined through concatenation of feature vectors and through the Multi-Cue Kernel. The challenge this year was to annotate images coming mainly from classes with only few training examples. We tackled the problem on two fronts: (1) we introduced a further integration strategy using SVM as an opinion maker; (2) we enriched the poorly populated classes adding virtual examples. We submitted several runs considering different combinations of the proposed techniques. The run jointly using the feature concatenation, the confidence-based opinion fusion and the virtual examples ranked first among all submissions.

Keywords

Feature Vector Image Retrieval Local Binary Pattern Scale Invariant Feature Transform Error Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods). Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Tommasi, T., Orabona, F., Caputo, B.: Discriminative cue integration for medical image annotation. PRL (2008) (in Press)Google Scholar
  3. 3.
    Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: ICCV (1999)Google Scholar
  4. 4.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. PAMI (2002)Google Scholar
  5. 5.
    Shyu, C.R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A., Broderick, L.: Local versus global features for content-based image retrieval. CBAIVL (1998)Google Scholar
  6. 6.
    Müller, H., Deselaers, T., Deserno, T.M., Clough, P., Kim, E., Hersh, W.R.: Overview of the ImageCLEFmed 2006 Medical Retrieval and Medical Annotation Tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 595–608. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: CVPR (2006)Google Scholar
  8. 8.
    Ahonen, T., Hadid, A., Pietikinen, M.: Face description with local binary patterns: application to face recognition. PAMI (2006)Google Scholar
  9. 9.
    Zhang, L., Li, S.Z., Yuan, X.T., Xiang, S.M.: Real-time Object Classification in Video Surveillance Based on Appearance Learning. In: CVPR (2007)Google Scholar
  10. 10.
    Unay, D., Ekin, A., Cetin, M., Jasinschi, R., Ercil, A.: Robustness of Local Binary Patterns in Brain MR Image Analysis. In: EMBS (2007)Google Scholar
  11. 11.
    Oliver, A., Lladó, X., Freixenet, J., Martí, J.: False Positive Reduction in Mammographic Mass Detection Using Local Binary Patterns. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 286–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Sanderson, C., Paliwal, K.K.: Identity Verification Using Speech and Face Information. Digital Signal Processing 14, 449–480 (2004)CrossRefGoogle Scholar
  13. 13.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nyström Method. PAMI (2004)Google Scholar
  14. 14.
    Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: SPIE (2003)Google Scholar
  15. 15.
    Keysers, D., Dahmen, J., Ney, H., Wein, B.B., Lehmann, T.M.: A Statistical Framework for Model-Based Image Retrieval in Medical Applications. J. Electronic Imaging 12, 59–68 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tatiana Tommasi
    • 1
  • Francesco Orabona
    • 1
  • Barbara Caputo
    • 1
  1. 1.Idiap Research InstituteMartignySwitzerland

Personalised recommendations