Advertisement

Annotation-Based Expansion and Late Fusion of Mixed Methods for Multimedia Image Retrieval

  • Hugo Jair Escalante
  • Jesús A. Gonzalez
  • Carlos A. Hernández
  • Aurelio López
  • Manuel Montes
  • Eduardo Morales
  • Luis E. Sucar
  • Luis Villaseñor-Pineda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper describes experimental results of two approaches to multimedia image retrieval: annotation-based expansion and late fusion of mixed methods. The former formulation consists of expanding manual annotations with labels generated by automatic annotation methods. Experimental results show that the performance of text-based methods can be improved with this strategy, specially, for visual topics; motivating further research in several directions. The second approach consists of combining the outputs of diverse image retrieval models based on different information. Experimental results show that competitive performance, in both retrieval and results diversification, can be obtained with this simple strategy. It is interesting that, contrary to previous work, the best results of the fusion were obtained by assigning a high weight to visual methods. Furthermore, a probabilistic modeling approach to result-diversification is proposed; experimental results reveal that some modifications are needed to achieve satisfactory results with this method.

Keywords

Mixed Method Image Retrieval Retrieval Model Manual Annotation Mean Average Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ah-Pine, J., Cifarelli, C., Clinchant, S., Csurka, G., Renders, J.M.: Xrce’s participation to imageclef 2008. In: Peters, C., et al. (eds.) Working Notes of the CLEF, Aarhus, Denmark (September 2008)Google Scholar
  2. 2.
    Arni, T., Sanderson, M., Clough, P., Grubinger, M.: Overview of the 2008 photographic retrieval task. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 500–511. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Escalante, H.J., Hernandez, C., Gonzalez, J., Lopez, A., Montes, M., Morales, E., Sucar, E., Villasenor, L.: The segmented and annotated IAPR-TC12 benchmark. Computer Vision and Image Understanding (in press, 2009), doi:10.1016/j.cviu.2009.03.008Google Scholar
  4. 4.
    Escalante, H.J., Hernandez, C., Lopez, A., Marin, H., Montes, M., Morales, E., Sucar, E., Villasenor, L.: Towards annotation-based query and document expansion for image retrieval. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 546–553. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Escalante, H.J., Hernandez, C., Sucar, E., Montes, M.: Late fusion of heterogeneous methods for multimedia image retrieval. In: Proc. of MIR 2008, Vancouver, Canada, pp. 172–179. ACM, New York (2008)Google Scholar
  6. 6.
    Gass, T., Weyand, T., Deselaers, T., Ney, H.: Fire in imageclef 2007: Support vector machines and logistic regression to fuse image descriptors for photo retrieval. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 492–499. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Grubinger, M., Clough, P., Hanbury, A., Müller, H.: Overview of the ImageCLEF 2007 photographic retrieval task. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 433–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hernández, C., Sucar, E.: Mrfs and spatial information to improve automatic image annotation. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 879–892. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Li, J., Datta, R., Joshi, D., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2) (2008)Google Scholar
  10. 10.
    Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, Mahwah (2007)Google Scholar
  11. 11.
    Zeimpekis, D., Gallopoulos, E.: Tmg: A matlab toolbox for generating term-document matrices from text collections. In: Kogan, J., et al. (eds.) Grouping Multidimensional Data: Recent Adv. in Clustering, pp. 187–210. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hugo Jair Escalante
    • 1
  • Jesús A. Gonzalez
    • 1
  • Carlos A. Hernández
    • 1
  • Aurelio López
    • 1
  • Manuel Montes
    • 1
  • Eduardo Morales
    • 1
  • Luis E. Sucar
    • 1
  • Luis Villaseñor-Pineda
    • 1
  1. 1.Instituto Nacional de Astrofísica, Óptica y ElectrónicaPueblaMéxico

Personalised recommendations