Advertisement

Diversity in Image Retrieval: DCU at ImageCLEFPhoto 2008

  • Neil O’Hare
  • Peter Wilkins
  • Cathal Gurrin
  • Eamonn Newman
  • Gareth J. F. Jones
  • Alan F. Smeaton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

DCU participated in the ImageCLEF 2008 photo retrieval task, which aimed to evaluate diversity in Image Retrieval, submitting runs for both the English and Random language annotation conditions. Our approaches used text-based and image-based retrieval to give baseline runs, with the the highest-ranked images from these baseline runs clustered using K-Means clustering of the text annotations, with representative images from each cluster ranked for the final submission. For random language annotations, we compared results from translated runs with untranslated runs. Our results show that combining image and text outperforms text alone and image alone, both for general retrieval performance and for diversity. Our baseline image and text runs give our best overall balance between retrieval and diversity; indeed, our baseline text and image run was the 2nd best automatic run for ImageCLEF 2008 Photographic Retrieval task. We found that clustering consistently gives a large improvement in diversity performance over the baseline, unclustered results, while degrading retrieval performance. Pseudo relevance feedback consistently improved retrieval, but always at the cost of diversity. We also found that the diversity of untranslated random runs was quite close to that of translated random runs, indicating that for this dataset at least, if diversity is our main concern it may not be necessary to translate the image annotations.

Keywords

Content-Based Image Retrieval Data Fusion Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arni, T., Clough, P., Sanderson, M., Grubinger, M.: Overview of the ImageCLEFphoto 2008 Photographic Retrieval Task. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 500–511. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Calinski, T., Harabasz, J.: A Dendrite Method for Cluster Analysis. Communications in Statistica 3, 1–27 (1974)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cavnar, W.B., Trenkle, J.M.: N-Gram-Based Text Categorization. In: Cavnar, W.B., Trenkle, J.M. (eds.) Proceedings of Third Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, April 11-13, pp. 161–175. UNLV Publications/Reprographic (1994)Google Scholar
  4. 4.
    Deselaers, T., Hanbury, A.: The Visual Concept Detection Task in ImageCLEF 2008. In: Peters, C., Giampiccol, D., Ferro, N., Petras, V., Gonzalo, J., Peñas, A., Deselaers, T., Mandl, T., Jones, G.J.F., Kurimo, M. (eds.) Evaluating Systems for Multilingual and Multimodal Information Access – 9th Workshop of the Cross-Language Evaluation Forum, Aarhus, Denmark. LNCS. Springer, Heidelberg (2008) (printed in, 2009)Google Scholar
  5. 5.
    Fox, E.A., Shaw, J.A.: Combination of Multiple Searches. In: Proceedings of the Third Text REtreival Conference (TREC 1994), Gaithersburg, MD, pp. 243–252 (1994)Google Scholar
  6. 6.
    Jarvelin, A., Wilkins, P., Adamek, T., Airio, E., Jones, G.J.F., Smeaton, A.F., Sormunen, E.: DCU and UTA at ImageCLEFPhoto 2007. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 530–537. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7: Multimedia Content Description Language. Wiley, Chichester (2002)Google Scholar
  8. 8.
    Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research Directions in Terrier: a Search Engine for Advanced Retrieval on the Web. In: Novatica/UPGRADE Special Issue on Web Information Access (2007)Google Scholar
  9. 9.
    Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.: Okapi at TREC-3. In: Proceedings of the Third Text Retrieval Conference (TREC-3), Gaithersburg, MD, pp. 109–126 (1995)Google Scholar
  10. 10.
    Wilkins, P., Ferguson, P., Smeaton, A.F.: Using Score Distributions for Querytime Fusion in Multimedia Retrieval. In: MIR 2006 - 8th ACM SIGMM International Workshop on Multimedia Information Retrieval, Santa Barbara, CA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Neil O’Hare
    • 1
  • Peter Wilkins
    • 1
  • Cathal Gurrin
    • 1
    • 2
  • Eamonn Newman
    • 1
  • Gareth J. F. Jones
    • 1
  • Alan F. Smeaton
    • 1
    • 2
  1. 1.Centre For Digital Video ProcessingDublin City UniversityIreland
  2. 2.CLARITY: Centre for Sensor Web TechnologiesIreland

Personalised recommendations