Advertisement

Increasing Precision and Diversity in Photo Retrieval by Result Fusion

  • Yih-Chen Chang
  • Hsin-Hsi Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper considers the strategies of query expansion, relevance feedback and result fusion to increase both precision and diversity in photo retrieval. In the text-based retrieval only experiments, the run with query expansion has better MAP and P20 than that without query expansion, and only has 0.85% decrease in CR20. Although relevance feedback run increases both MAP and P20, its CR20 decreases 10.18% compared with the non-feedback run. It shows that relevance feedback brings in relevant but similar images, thus diversity may be decreased. The run with both query expansion and relevance feedback is the best in the four text-based runs. Its F1-measure is 0.2791, which has 20.8% increase to the baseline model. In the content-based retrieval only experiments, the run without feedback outperforms the run with feedback. The latter has 10.84%, 9.13%, 20.46%, and 16.7% performance decrease in MAP, P20, CR20, and F1-measure. In the fusion experiment, integrating text-based and content-based retrieval not only reports more relevant images, but also more diverse ones. Its F1-measure is 0.3189.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arni, T., Clough, P., Sanderson, M., Grubinger, M.: Overview of the ImageCLEFphoto 2008 Photographic Retrieval Task. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 500–511. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Clough, P., Sanderson, M., Müller, H.: The CLEF 2004 Cross-Language Image Retrieval Track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 Cross-Language Image Retrieval Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Clough, P., Grubinger, M., Deselaers, T., Hanbury, A., Müller, H.: Overview of the ImageCLEF 2006 Photographic Retrieval and Object Annotation Tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 579–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Grubinger, M., Clough, P., Hanbury, A., Müller, H.: Overview of the ImageCLEFphoto 2007 Photographic Retrieval Task. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 433–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Lin, W.C., Chang, Y.C., Chen, H.H.: Integrating Textual and Visual Information for Cross-Language Image Retrieval: A Trans-Media Dictionary Approach. Information Processing and Management 43, 488–502 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, H.H., Chang, Y.C.: Language Translation and Media Transformation in Cross-Language Image Retrieval. In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp. 350–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Clarke, C., Kolla, M., Cormack, G., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and Diversity in Information Retrieval Evaluation. In: 31st ACM SIGIR, Singapore, pp. 659–666 (2008)Google Scholar
  9. 9.
    Chang, Y.C., Chen, H.H.: Approaches of Using a Word-Image Ontology and an Annotated Image Corpus as Intermedia for Cross-Language Image Retrieval. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 625–632. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lin, W.C., Chen, H.H.: Merging Results Using Predicted Retrieval Effectiveness. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 202–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Tsai, M.F., Wang, Y.T., Chen, H.H.: A Study of Learning a Merge Model for Multilingual Information Retrieval. In: 31st ACM SIGIR, Singapore, pp. 195–202 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yih-Chen Chang
    • 1
  • Hsin-Hsi Chen
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations