Advertisement

Meiji University at ImageCLEF2008 Photo Retrieval Task: Evaluation of Image Retrieval Methods Integrating Different Media

  • Kosuke Yamauchi
  • Takuya Nomura
  • Keiko Usui
  • Yusuke Kamoi
  • Tomohiro Takagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper describes the participation of the Human Interface Laboratory of Meiji University in the ImageCLEF2008 photo retrieval task. We submitted eight retrieval runs taking two main approaches. The first approach combined Text-Based Image Retrieval (TBIR) and Context-Based Image Retrieval (CBIR). The second approach applied query expansion using conceptual fuzzy sets (CFS). A CFS is a method that uses the expression of meaning depending on the context, which an ordinary fuzzy set does not recognize. A conceptual dictionary is necessary to perform query expansion using CFS, and this is constructed by clustering. We propose here the use of query expansion with CFS and other techniques, for image retrieval that integrates different media, and we verify the utility of the system by explaining our experimental results. This time, TBIR+CFS in the system which we proposed is selected No.1 with “Text Only” runs, and we demonstrated that question expansion with CFS produced higher search results.

Keywords

Information Retrieval Image Retrieval Query Expansion  Conceptual Fuzzy Sets Fuzzy Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arni, T., Clough, P., Sanderson, M., Grubinger, M.: Overview of the ImageCLEFphoto2008 Photographic Retrieval Task. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 500–511. Springer, Heidelberg (2009)Google Scholar
  2. 2.
  3. 3.
    Chen, Y.-C., Sekiya, H., Takagi, T.: Conceptualized Queries for Information Retrieval. In: Proceedings of North American Fuzzy Information Processing Society Annual Conference, NAFIPS (2007)Google Scholar
  4. 4.
    Rahman, M.M., Sood, V.K., Desai, B.C., Bhattacharya, P.: CINDI at imageCLEF 2006: Image retrieval & annotation tasks for the general photographic and medical image collections. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 715–724. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Robertson, S.E., Walker, S., Jones, S.: Micheline Hancock-Beaulieu, and Mike Gatford, “Okapi at TREC-3”. In: Proceedings of the Third Text Retrieval Conference, TREC (1994)Google Scholar
  7. 7.
    Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. Transactions of Pattern Analysis and Machine Intelligence 2001 (2001)Google Scholar
  8. 8.
    Maillot, N., Chevallet, J.-P., Valea, V., Lim, J.H.: IPAL Inter-Media Pseudo-Relevance Feedback Approach to ImageCLEF 2006 Photo Retrieval. In: Proceedings of the Cross Language Evaluation Forum (CLEF) 2006 Workshop, Alicante, Spain (2006)Google Scholar
  9. 9.
    Liu, H., Song, D., Ruger, S., Hu, R., Uren, V.: Comparing Dissimilarity Measures for Content-Based Image Retrieval. In: Li, H., Liu, T., Ma, W.-Y., Sakai, T., Wong, K.-F., Zhou, G. (eds.) AIRS 2008. LNCS, vol. 4993, pp. 44–50. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kosuke Yamauchi
    • 1
  • Takuya Nomura
    • 1
  • Keiko Usui
    • 1
  • Yusuke Kamoi
    • 1
  • Tomohiro Takagi
    • 1
  1. 1.Department of Computer ScienceMeiji UniversityKanagawaJapan

Personalised recommendations