Advertisement

Some Experiments in Question Answering with a Disambiguated Document Collection

  • Davide Buscaldi
  • Paolo Rosso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper describes our approach to the Question Answering - Word Sense Disambiguation task. This task consists in carrying out Question Answering over a disambiguated document collection. In our approach, disambiguated documents are used to improve the accuracy of the retrieval phase. In order to do this, we added a WordNet-expanded index to the document collection. The expanded index contains synonyms, hypernyms and holonyms of the words already in the documents. Question words are searched for in both the expanded WordNet index and the default index. The obtained results show that the system that exploited disambiguation obtained better precision than the non-WSD one.

Keywords

Question Answering Word Sense Disambiguation Retrieval Phase Labour Party Indexing Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agirre, E., Lopez de Lacalle, O.: UBC-ALM: Combnining k-NN with SVD for WSD. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech republic, pp. 341–345 (2007)Google Scholar
  2. 2.
    Buscaldi, D., Gómez, J.M., Rosso, P., Sanchis, E.: N-gram vs. keyword-based passage retrieval for question answering. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 377–384. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Buscaldi, D., Rosso, P., Sanchis, E.: A wordnet-based indexing technique for geographical information retrieval. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 954–957. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gonzalo, J., Verdejo, F., Chugur, I., Cigarrán, J.: Indexing with wordnet synsets can improve text retrieval. In: COLING/ACL 1998 workshop on the Usage of WordNet for NLP, Montreal, Canada, pp. 38–44 (1998)Google Scholar
  5. 5.
    Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  6. 6.
    Rosso, P., Ferretti, E., Vidal, V.: Text categorization and information retrieval using wordnet senses. In: 2nd Global WordNet Conference (GWC 2004), Brno, Czech Rep., pp. 299–304 (2004)Google Scholar
  7. 7.
    Sanderson, M.: Word Sense Disambiguation and Information Retrieval. PhD thesis, University of Glasgow, Glasgow, Scotland, UK (1996)Google Scholar
  8. 8.
    Chan, Y.S., Ng, H.T., Zhong, Z.: US-PT: Exploiting Parallel Texts for Word Sense Disambiguation in the English All-Words Tasks. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech republic, pp. 253–256 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Davide Buscaldi
    • 1
  • Paolo Rosso
    • 1
  1. 1.Natural Language Engineering Lab., Dpto. de Sistemas Informáticos y Computación (DSIC)Universidad Politécnica de ValenciaSpain

Personalised recommendations