Advertisement

Dublin City University at QA@CLEF 2008

  • Sisay Fissaha Adafre
  • Josef van Genabith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

We describe our participation in Multilingual Question Answering at CLEF 2008 using German and English as our source and target languages, respectively. The system was built using UIMA (Unstructured Information Management Architechture) as underlying framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cahill, A., Burke, O.R., Riezler, S., Genabith, J., Way, A.: Wide-Coverage Statistical Parsing Using Automatic Dependency Structure Annotation. Computational Linguistics 34(1), 81–124 (2008)CrossRefGoogle Scholar
  2. 2.
    Lucene. The Lucene search engine, http://lucene.apache.org/
  3. 3.
    Molla, D., Gardiner, M.: Answerfinder - question answering by combining lexical. In: Australasian Language Technology Workshop (ALTW), Sydney (2004)Google Scholar
  4. 4.
    Monz, C.: From Document Retrieval to Question Answering. PhD thesis, University of Amsterdam (2003)Google Scholar
  5. 5.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: International Conference on New Methods in Language Processing, UK (1994)Google Scholar
  6. 6.
    Tjong Kim Sang, E.F.: Introduction to the conll-2002 shared task: Language-independent named entity recognition. In: COLING 2002: Proceedings of the 6th conference on Natural language learning (2002)Google Scholar
  7. 7.
    UIMA. Unstructured information management architecture, http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html
  8. 8.
    Kupiec, J.: Murax: A robust linguistic approach for question-answering using an on-line encyclopedia. In: Proceedings of 16th Annual International ACM/SIGIR Conference (1993)Google Scholar
  9. 9.
    Li, X., Roth, D.: Learning question classifiers, 2002. In: Proc. COLING 2002 (2002)Google Scholar
  10. 10.
    Cohen, W.: Methods for identifying names and ontological relations in text using heuristics for inducing regularities from data, http://minorthird.sourceforge.net
  11. 11.
    Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the first conference on North American chapter of the Association for Computational Linguistics, pp. 132–139. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  12. 12.
    Katz, B., Lin, J.: Selectively using relations to improve precision in question answering. In: Proceedings of EACL 2003 Workshop on Natural Language Processing for Question Answering (April 2003)Google Scholar
  13. 13.
    Lamjiri, A.K., Kosseim, L., Radakrishnan, T.: Comparing the Contribution of Syntactic and Semantic Features in Closed versus Open Domain Question Answering. In: Proc. ICSC 2007, Irvine, California, USA, pp. 679–685 (2007)Google Scholar
  14. 14.
    Adafre, S.F., de Rijke, M.: Estimating importance features for fact mining (with a case study in biography mining). In: RIAO (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sisay Fissaha Adafre
    • 1
  • Josef van Genabith
    • 2
  1. 1.National Center for Language Technology, School of ComputingDCUIrland
  2. 2.IBM CAS DublinIrland

Personalised recommendations