Firefly Algorithm for Continuous Constrained Optimization Tasks

  • Szymon Łukasik
  • Sławomir Żak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5796)


The paper provides an insight into the improved novel metaheuristics of the Firefly Algorithm for constrained continuous optimization tasks. The presented technique is inspired by social behavior of fireflies and the phenomenon of bioluminescent communication. The first part of the paper is devoted to the detailed description of the existing algorithm. Then some suggestions for extending the simple scheme of the technique under consideration are presented. Subsequent sections concentrate on the performed experimental parameter studies and a comparison with existing Particle Swarm Optimization strategy based on existing benchmark instances. Finally some concluding remarks on possible algorithm extensions are given, as well as some properties of the presented approach and comments on its performance in the constrained continuous optimization tasks.


firefly algorithm constrained continuous optimization swarm intelligence metaheuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Encyclopædia Britannica: Firefly. In: Encyclopædia Britannica. Ultimate Reference Suite. Encyclopædia Britannica, Chicago (2009)Google Scholar
  2. 2.
    Babu, B.G., Kannan, M.: Lightning bugs. Resonance 7(9), 49–55 (2002)CrossRefGoogle Scholar
  3. 3.
    Fraga, H.: Firefly luminescence: A historical perspective and recent developments. Journal of Photochemical & Photobiological Sciences 7, 146–158 (2008)CrossRefGoogle Scholar
  4. 4.
    Lewis, S., Cratsley, C.: Flash signal evolution, mate choice, and predation in fireflies. Annual Review of Entomology 53, 293–321 (2008)CrossRefGoogle Scholar
  5. 5.
    Leidenfrost, R., Elmenreich, W.: Establishing wireless time-triggered communication using a firefly clock synchronization approach. In: Proceedings of the 2008 International Workshop on Intelligent Solutions in Embedded Systems, pp. 1–18 (2008)Google Scholar
  6. 6.
    Jumadinova, J., Dasgupta, P.: Firefly-inspired synchronization for improved dynamic pricing in online markets. In: Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 403–412 (2008)Google Scholar
  7. 7.
    Krishnanand, K., Ghose, D.: Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent and Grid Systems 2(3), 209–222 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  9. 9.
    Eberhart, R.C., Shi, Y.: Computational Intelligence: Concepts to Implementations. Morgan Kaufmann, San Francisco (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4, pp. 1942–1948 (1995)Google Scholar
  12. 12.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. Journal of Global Optimization 31(1), 93–108 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control & Cybernetics 25(1), 33–55 (1996)zbMATHGoogle Scholar
  14. 14.
    Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)zbMATHGoogle Scholar
  15. 15.
    Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons, Inc., Chichester (1981)zbMATHGoogle Scholar
  16. 16.
    Easom, E.: A survey of global optimization techniques. Master’s thesis, University of Louisville (1990)Google Scholar
  17. 17.
    Mühlenbein, H., Schomisch, D., Born, J.: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 17(6-7), 619–632 (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Griewank, A.: Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, 11–39 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosenbrock, H.H.: State-Space and Multivariable Theory. Thomas Nelson & Sons Ltd. (1970)Google Scholar
  20. 20.
  21. 21.
    Törn, A., Žilinskas, A.: Global Optimization. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shekel, J.: Test functions for multimodal search techniques. In: Proceedings of the 5th Princeton Conference on Infomration Science and Systems, pp. 354–359 (1971)Google Scholar
  23. 23.
    Jansson, C., Knüppel, O.: Numerical results for a self-validating global optimization method. Technical Report 94.1, Technical University of Hamburg-Harburg (1994)Google Scholar
  24. 24.
    Bilchev, G., Parmee, I.: Inductive search. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 832–836 (1996)Google Scholar
  25. 25.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  26. 26.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Szymon Łukasik
    • 1
  • Sławomir Żak
    • 1
  1. 1.Systems Research InstitutePolish Academy of SciencesPoland

Personalised recommendations