Advertisement

The Norm Game on a Model Network: A Critical Line

  • Marcin Rybak
  • Antoni Dydejczyk
  • Krzysztof Kułakowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5796)

Abstract

The norm game (NG) introduced by Robert Axelrod is a convenient frame to disccuss the time evolution of the level of preserving norms in social systems. Recently NG was formulated in terms of a social contagion on a model social network with two stable states: defectors or punishers. Here we calculate the critical line between these states on the plane of parameters, which measure the severities of punishing and of being punished. We show also that the position of this line is more susceptible to the amount of agents who always punish and never defect, than to those who always defect and never punish. The process is discussed in the context of the statistical data on crimes in some European countries close to Wrocław - the place of this Conference - around 1990.

Keywords

Social networks multiagent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunbar, R.I.M.: Annual Review of Anthropology 32, 163–181 (2003)Google Scholar
  2. 2.
    Kȩpiński, A.: Self-portrait of a man (in Polish). Wyd. Literackie, Kraków (2003)Google Scholar
  3. 3.
    Axelrod, R.: Amer. Political Sci. Rev. 80, 1095-1111 (1986)Google Scholar
  4. 4.
    Axelrod, R.: Complexity of Cooperation. Player-Based Models of Competition and Collaboration. Princeton UP, Princeton (1997)Google Scholar
  5. 5.
    Galan, M., Izquierdo, L.: JASSS 8(3), 2 (2005)Google Scholar
  6. 6.
    Neumann, M.: JASSS 11(4/6) (2008)Google Scholar
  7. 7.
    Axelrod, R.: Analyse und Kritik 22, 130-151 (2000)Google Scholar
  8. 8.
    Deffuant, G., Moss, S., Jager, W.: JASSS 9(1), 1 (2006)Google Scholar
  9. 9.
    Castellano, C., Fortunato, S., Loreto, V.: Rev. Mod. Phys. 81, 591–646 (2009)Google Scholar
  10. 10.
  11. 11.
    Michard, Q., Bouchaud, J.-P.: Eur. Phys. J. B 47, 151-159 (2005)Google Scholar
  12. 12.
    Kułakowski, K.: Int. J. Mod. Phys. C 19, 1105-1111 (2008)Google Scholar
  13. 13.
    Kułakowski, K., Dydejczyk, A., Rybak, M.: The norm game-how a norm fails. In: Allen, G., et al. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 835–844. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Routledge, London (2003)zbMATHGoogle Scholar
  15. 15.
    Bollobás, B., Riordan, O.: Percolation. Cambridge UP, Cambridge (2006)Google Scholar
  16. 16.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge UP, Cambridge (1994)Google Scholar
  17. 17.
    Hanneman, R.A., Riddle, M.: Introduction to Social Network Methods. University of California, Riverside (2005), http://faculty.ucr.edu/~hanneman/
  18. 18.
    Newman, M.E.J.: PNAS 98, 404-409 (2001)Google Scholar
  19. 19.
    González, M.C., Herrmann, H.J., Kertész, J., Vicsek, T.: Physica A 379, 307-316 (2007)Google Scholar
  20. 20.
    Onnela, J.-P., Saramáki, J., Hyvonen, J., Szabó, G., Argollo de Menezes, M., Kaski, K., Barabási, A.-L., Kertész, J.: New J. Phys. 9, 179 (2007)Google Scholar
  21. 21.
    Newman, M.E.J., Watts, D.J., Strogatz, S.H.: PNAS 99, 2566-2572 (2002)Google Scholar
  22. 22.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: PNAS 97, 11149-11152 (2000)Google Scholar
  23. 23.
    Schnegg, M.: Int. J. Mod. Phys. C 17, 1067-1076 (2006)Google Scholar
  24. 24.
    Dodds, P.S., Watts, D.J.: Phys. Rev. Lett. 92, 218701 (2004)Google Scholar
  25. 25.
    Marshall, G. (ed.): The Concise Oxford Dictionary of Sociology. Oxford UP, Oxford (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcin Rybak
    • 1
  • Antoni Dydejczyk
    • 1
  • Krzysztof Kułakowski
    • 1
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations