Advertisement

Introduction

The techniques used to solve difficult combinatorial optimization problems have evolved from constructive algorithms to local search techniques, and finally to population-based algorithms. Population-based methods have become very popular. They provide good solutions since any constructive method can be used to generate the initial population, and any local search technique can be used to improve each solution in the population. But population-based methods have the additional advantage of being able to combine good solutions in order to get possibly better ones. The basic idea behind this way of doing is that good solutions often share parts with optimal solutions.

Keywords

Multiagent System Combinatorial Optimization Problem Local Search Technique Resource Constrain Project Schedule Problem Distribute Data Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aydin, M.E., Fogarty, T.C.: Teams of asynchronous agents for job-shop scheduling  problems: an experimental study. Journal of Intelligent Manufacturing 15(4), 455–462 (2004)CrossRefGoogle Scholar
  2. 2.
    Baerentzen, L., Avila, P., Talukdar, S.: Learning Network Designs for Asynchronous  Teams. In: MAAMAW, pp. 177–196 (1997)Google Scholar
  3. 3.
    Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak, E., Wierzbowska, I.: JADE-Based A-Team as a Tool for Implementing Population-Based Algorithms. In: Chen, Y., Abraham, A. (eds.) Intelligent Systems Design and Applications, IDSA, Jinan Shandong China, pp. 144–149. IEEE, Los Alamitos (2006)Google Scholar
  4. 4.
    Barbucha, D., Jedrzejowicz, P.: Multi-agent platform for solving the dynamic vehicle routing problem. In: Proc. 11th Int. IEEE Conference on Intelligent Transportation Systems, Beijing, pp. 517–522 (2008)Google Scholar
  5. 5.
    Barbucha, D., Jedrzejowicz, P.: An experimental investigation of the synergetic effect of multiple agents working together in the A-Team. System Science 34(2), 55–62 (2008)zbMATHGoogle Scholar
  6. 6.
    Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: An Implementation of the JADE-base A-Team Environment. International Transactions on Systems Science and Applications 3(4), 319–328 (2008)Google Scholar
  7. 7.
    Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Web accessible A-team middleware. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 624–633. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Barbucha, D.: Simulating Activities of the Transportation Company through Multi-Agent System Solving the Dynamic Vehicle Routing Problem. In: Hakansson, A., et al. (eds.) KES AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 773–782. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper, Exp. 3(3), 6–20 (2003)zbMATHGoogle Scholar
  10. 10.
    Beni, G.: The concept of cellular robotic system. In: Proceedings of the 1988 IEEE International Symposium on Intelligent Control, pp. 57–62. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  11. 11.
    Beni, G., Wang, J.: Swarm intelligence. In: Proceedings of the Seventh Annual Meeting of the Robotics Society of Japan, pp. 425–428. RSJ Press, Tokyo (1989)Google Scholar
  12. 12.
    Beni, G.S.: Hackwood: Stationary waves in cyclic swarms. In: Proceedings of the 1992 International Symposium on Intelligent Control, pp. 234–242. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  13. 13.
    Blum, J., Eskandarian, A.: Enhancing Intelligent Agent Collaboration for Flow Optimization of Railroad Traffic. Transportation Research 36(10), 919–930 (2002)CrossRefGoogle Scholar
  14. 14.
    Camponogara, E., Talukdar, S.: Designing communication networks for distributed control agents. European Journal of Operational Research 153, 544–563 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, C.L., Talukda, S.N.: Causal Nets for Fault Diagnosis. In: 4th International Conference on Expert Systems Application to Power Systems, Melbourne, Australia, pp. 65–70 (1993)Google Scholar
  16. 16.
    Cheyer, A., Martin, D.: The open agent architecture. Journal of Autonomous Agents and Multi-Agent Systems 4(1), 1438 (2001)Google Scholar
  17. 17.
    Correa, R., Gomes, F.C., Oliveira, C., Pardalos, P.M.: A parallel implementation of an asynchronous team to the point-to-point connection problem. Parallel Computing 29, 447–466 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Craig, I.: Blackboard systems. Alex Publishing Co., Norwood (1995)Google Scholar
  19. 19.
    Czarnowski, I., Jedrzejowicz, P.: An agent-based approach to ANN training. Knowledge-Based Systems 19, 304–308 (2006)CrossRefGoogle Scholar
  20. 20.
    Czarnowski, I., Jȩdrzejowicz, P.: An agent-based approach to the multiple-objective selection of reference vectors. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 117–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Czarnowski, I., Jedrzejowicz, P.: An Agent-Based Algorithm for Data Reduction. In: Bramer, M., et al. (eds.) Research and Development in Intelligent Systems XXIV, pp. 351–356. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Czarnowski, I., Jędrzejowicz, P., Wierzbowska, I.: An A-team approach to learning classifiers from distributed data sources. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS (LNAI), vol. 4953, pp. 536–546. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Czarnowski, I., Jȩdrzejowicz, P.: Data reduction algorithm for machine learning and data mining. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 276–285. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Czarnowski, I., Jȩdrzejowicz, P.: A framework for adaptive and integrated classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 522–532. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Czarnowski, I.: Distributed Data Reduction through Agent Collaboration. In: Hakansson, A., et al. (eds.) KES AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 724–733. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Czarnowski, I., Jedrzejowicz, P., Wierzbowska, I.: A-Team Middleware on a Cluster. In: Hakansson, A., et al. (eds.) KES AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 764–772. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Dreżewski, R.: A model of co-evolution in multi-agent system. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 314–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Far, B.H.: Modeling and implementation of software agents decision making. In: Proceedings of the Third IEEE International Conference on Cognitive Informatics, pp. 258–267 (2004)Google Scholar
  29. 29.
    Glover, F.: Tabu search and adaptive memory programming advances, applications and challenges. In: Barr, R.S., et al. (eds.) Advances in Metaheuristics, Optimization and Stochastic Modelling Technologies, pp. 1–75. Kluwer Academic Publishers, Boston (1997)Google Scholar
  30. 30.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  31. 31.
    Gorti, S., Humair, R.D., Sriram, S.N., Talukdar, S.: Solving constraint satisfaction problems using A-Teams. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 10, 1–19 (1996)CrossRefGoogle Scholar
  32. 32.
    Jedrzejowicz, P.: Population learning algorithm and its applications. In: Olariu, S., Zomaya, A.Y. (eds.) Handbook of Bioinspired Algorithms and Applications, pp. 555–588. Chapman & Hall, Boca Raton (2006)Google Scholar
  33. 33.
    Jędrzejowicz, P., Wierzbowska, I.: JADE-based A-team environment. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Jedrzejowicz, J., Jedrzejowicz, P.: An investigation of agent-based hybrid approach to solve flowshop and job-shop scheduling problems. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 172–179. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Jędrzejowicz, P., Ratajczak-Ropel, E.: Agent-based approach to solving the resource constrained project scheduling problem. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 480–487. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Jederzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the Team of Agents. In: Hakansson, A., et al. (eds.) KES AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 734–743. Springer, Heidelberg (2009)Google Scholar
  37. 37.
    Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Autonomous Agent and Multi-Agent Systems 1, 7–38 (1998)CrossRefGoogle Scholar
  38. 38.
    Kao, J.H., Hemmerle, J.S., Prinz, F.B.: Collision avoidance using asynchronous teams. In: 1996 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1093–1100 (1996)Google Scholar
  39. 39.
    Kisiel-Dorohinicki, M.: Agent-oriented model of simulated evolution. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Koubarakis, M.: Multi-agent systems and peer-to-peer computing: Methods, systems, and challenges. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 46–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  41. 41.
    Lesser, R.: Cooperative Multiagent Systems: A Personal View of the State of the Art. IEEE Transactions on Knowledge and Data Engineering 11(1), 133–142 (1999)CrossRefGoogle Scholar
  42. 42.
    Meneses, C.N., Pardalos, P.M., Ragle, M.: Asynchronous Teams for probe selection problems. Discrete Optimization 5, 74–87 (2008)CrossRefzbMATHGoogle Scholar
  43. 43.
    Murthy, S., Rachlin, J., Akkiraju, R., Wu, F.: Agent-Based Cooperative Scheduling. In: Charniak, E.C. (ed.) Constraints and Agents, AAAI-1997, pp. 112–117 (1997)Google Scholar
  44. 44.
    Müller, J.P.: The right agent (Architecture) to do the right thing. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 211–225. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  45. 45.
    Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems - A modal logic formulation. Artificial Intelligence 149(1), 31–60 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Olariu, S., Zomaya, A.Y. (eds.): Handbook of Bioinspired Algorithms and Applications. Chapman & Hall, Boca Raton (2006)zbMATHGoogle Scholar
  47. 47.
    Paredis, J.: Coevolutionary computation. Artificial Life 2(4), 355–375 (1995)CrossRefGoogle Scholar
  48. 48.
    Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)CrossRefGoogle Scholar
  49. 49.
    Rabak, C.S., Sichman, J.S.: Using A-Teams to optimize automatic insertion of electronic components. Advanced Engineering Informatics 17, 95–106 (2003)CrossRefGoogle Scholar
  50. 50.
    Rachlin, J., Goodwin, R., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S., Das, R.: A-teams: An agent architecture for optimization and decision-support. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 261–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  51. 51.
    Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research 135, 1–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Talukdar, S.N., Pyo, S.S., Giras, T.: Asynchronous Procedures for Parallel Processing. IEEE Trans. on PAS 102(11), 3652–3659 (1983)CrossRefGoogle Scholar
  53. 53.
    Talukdar, S.N., de Souza, P.S.W.: Scale Efficient Organizations. In: Proc. 1992 IEEE International Conference on Systems, Man, and Cybernetics, Chicago, Il, pp. 1458–1463 (1992)Google Scholar
  54. 54.
    Talukdar, S.N., de Souza, P., Murthy, S.: Organizations for Computer-Based Agents. Engineering Intelligent Systems 1(2), 56–69 (1993)Google Scholar
  55. 55.
    Talukdar, S.N., Ramesh, V.C.: A muti-agent technique for contingency constrained optimal power flows. IEEE Transactions on Power Systems 9(2), 855–861 (1994)CrossRefGoogle Scholar
  56. 56.
    Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous teams: cooperation schemes for autonomous agents. Journal of Heuristics 4(4), 295–332 (1998)CrossRefzbMATHGoogle Scholar
  57. 57.
    Talukdar, S.N.: Collaboration rules for autonomous software agents. Decision Support Systems 24, 269–278 (1999)CrossRefGoogle Scholar
  58. 58.
    Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.E.: Innovations in multi-agent systems. Journal of Network and Computer Applications 30(3), 1089–1115 (2007)CrossRefGoogle Scholar
  59. 59.
    Vahidov, R., Fazlollahi, B.: Pluralistic multi-agent decision support system: a framework and an empirical test. Information & Management 41, 883–898 (2004)CrossRefGoogle Scholar
  60. 60.
    Yang, H., Zhang, C.: Definition and application of a comprehensive framework for distributed problem solving. In: Distributed Artificial Intelligence, Architecture and Modeling, First Australian Workshop on DAI, Canberra, pp. 1–16 (1995)Google Scholar
  61. 61.
    Zhang, C.: Cooperation under uncertainty in distributed expert systems. Artificial Intelligence 56, 21–69 (1992)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Zhu, Q.: Topologies of agents interactions in knowledge intensive multi-agent systems for networked information services. Advanced Engineering Informatics 20, 31–45 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Piotr Jȩdrzejowicz
    • 1
  1. 1.Chair of Information SystemsGdynia Maritime UniversityGdyniaPoland

Personalised recommendations