Skip to main content

Computable Bayesian Compression for Uniformly Discretizable Statistical Models

  • Conference paper
Algorithmic Learning Theory (ALT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5809))

Included in the following conference series:

  • 1145 Accesses

Abstract

Supplementing Vovk and V’yugin’s ‘if’ statement, we show that Bayesian compression provides the best enumerable compression for parameter-typical data if and only if the parameter is Martin-Löf random with respect to the prior. The result is derived for uniformly discretizable statistical models, introduced here. They feature the crucial property that given a discretized parameter, we can compute how much data is needed to learn its value with little uncertainty. Exponential families and certain nonparametric models are shown to be uniformly discretizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vovk, V.G., V’yugin, V.V.: On the empirical validity of the Bayesian method. J. Roy. Statist. Soc. B 55, 253–266 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Vovk, V.G., V’yugin, V.V.: Prequential level of impossibility with some applications. J. Roy. Statist. Soc. B 56, 115–123 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Vitányi, P., Li, M.: Minimum description length induction, Bayesianism and Kolmogorov complexity. IEEE Trans. Inform. Theor. 46, 446–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Takahashi, H.: On a definition of random sequences with respect to conditional probability. Inform. Comput. 206, 1375–1382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gács, P.: On the symmetry of algorithmic information. Dokl. Akad. Nauk SSSR 15, 1477–1480 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  7. van Lambalgen, M.: Random Sequences. PhD thesis, Universiteit van Amsterdam (1987)

    Google Scholar 

  8. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling. IEEE Trans. Inform. Theor. 44, 2743–2760 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)

    Google Scholar 

  10. Yu, B., Speed, T.P.: Data compression and histograms. Probab. Theor. Rel. Fields 92, 195–229 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  12. Elias, P.: Universal codeword sets and representations for the integers. IEEE Trans. Inform. Theor. 21, 194–203 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barron, A.R.: Logically Smooth Density Estimation. PhD thesis, Stanford University (1985)

    Google Scholar 

  14. Dawid, A.: Statistical theory: The prequential approach. J. Roy. Statist. Soc. A 147, 278–292 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  MATH  Google Scholar 

  16. Li, L., Yu, B.: Iterated logarithmic expansions of the pathwise code lengths for exponential families. IEEE Trans. Inform. Theor. 46, 2683–2689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barndorff-Nielsen, O.E.: Information and Exponential Families. Wiley, Chichester (1978)

    MATH  Google Scholar 

  18. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  19. Dębowski, Ł.: On the vocabulary of grammar-based codes and the logical consistency of texts (2008) E-print, http://arxiv.org/abs/0810.3125

  20. Csiszar, I., Shields, P.C.: The consistency of the BIC Markov order estimator. Ann. Statist. 28, 1601–1619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dębowski, Ł. (2009). Computable Bayesian Compression for Uniformly Discretizable Statistical Models. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2009. Lecture Notes in Computer Science(), vol 5809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04414-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04414-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04413-7

  • Online ISBN: 978-3-642-04414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics