Skip to main content

Completing Networks Using Observed Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5809))

Abstract

This paper studies problems of completing a given Boolean network (Boolean circuit) so that the input/output behavior is consistent with given examples, where we only consider acyclic networks. These problems arise in the study of inference of signaling networks using reporter proteins. We prove that these problems are NP-complete in general and a basic version remains NP-complete even for tree structured networks. On the other hand, we show that these problems can be solved in polynomial time for partial k-trees of bounded (constant) indegree if a logarithmic number of examples are given.

This work is partially supported by the Cell Array Project from NEDO, Japan and by a Grant-in-Aid ‘Systems Genomics’ from MEXT, Japan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proc. Pacific Symposium on Biocomputing 1999, pp. 17–28 (1999)

    Google Scholar 

  2. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model. Theoretical Computer Science 298, 235–251 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akutsu, T., Hayashida, M., Ching, W.-K., Ng, M.K.: Control of Boolean networks: Hardness results and algorithms for tree structured networks. Journal of Theoretical Biology 244, 670–679 (2007)

    Article  MathSciNet  Google Scholar 

  4. Angluin, D., Aspnes, J., Chen, J., Wu, Y.: Learning a circuit by injecting values. In: Proc. 38th Annual ACM Symposium on Theory of Computing, pp. 584–593 (2006)

    Google Scholar 

  5. Angluin, D., Aspnes, J., Chen, J., Reyzin, L.: Learning large-alphabet and analog circuits with value injection queries. Machine Learning 72, 113–138 (2008)

    Article  MATH  Google Scholar 

  6. Angluin, D., Aspnes, J., Chen, J., Eisenstat, D., Reyzin, L.: Learning acyclic probabilistic circuits using test paths. In: Proc. 21st Annual Conference on Learning Theory, pp. 169–180 (2008)

    Google Scholar 

  7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  10. Gupta, S., Bisht, S.S., Kukreti, R., Jain, S., Brahmachari, S.K.: Boolean network analysis of a neurotransmitter signaling pathway. Journal of Theoretical Biology 244, 463–469 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ideker, T.E., Thorsson, V., Karp, R.M.: Discovery of regulatory interactions through perturbation: inference and experimental design. In: Proc. Pacific Symposium on Biocomputing 2000, pp. 302–313 (2000)

    Google Scholar 

  12. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford Univ. Press, NY (1993)

    Google Scholar 

  13. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  14. Mochizuki, A.: Structure of regulatory networks and diversity of gene expression patterns. Journal of Theoretical Biology 250, 307–321 (2008)

    Article  MathSciNet  Google Scholar 

  15. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Journal of the ACM 35, 965–984 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tokumoto, Y., Horimoto, K., Miyake, J.: TRAIL inhibited the cyclic AMP responsible element mediated gene expression. Biochemical and Biophysical Research Communications 381, 533–536 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akutsu, T., Tamura, T., Horimoto, K. (2009). Completing Networks Using Observed Data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2009. Lecture Notes in Computer Science(), vol 5809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04414-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04414-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04413-7

  • Online ISBN: 978-3-642-04414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics