Advertisement

Convergence of Binomial-Based Derivative Estimation for C2 Noisy Discretized Curves

  • Henri-Alex Esbelin
  • Rémy Malgouyres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

We present new convergence results for the integer-only binomial masks method to estimate derivatives of digitized functions. The results work for C 2 functions and as a consequence we obtain a complete uniform convergence result for parametrized C 2 curves.

Keywords

Parametrized Curve Simple Closed Curve Mask Size Real Curve Uniform Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Symposium on Computational Geometry, pp. 162–165 (1991)Google Scholar
  2. 2.
    Floater, M.S.: On the convergence of derivatives of Bernstein approximation. J. Approx. Theory 134(1), 130–135 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kerautret, B., Lachaud, J.-O., Naegel, B.: Comparison of discrete curvature estimators and application to corner detection. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 710–719. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Kimmel, R., Sochen, N.A., Weickert, J.: Scale-Space and PDE methods in computer vision. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  7. 7.
    Lindeberg, T.: Scale-Space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12(3), 234–254 (1990)CrossRefGoogle Scholar
  8. 8.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Henri-Alex Esbelin
    • 1
  • Rémy Malgouyres
    • 1
  1. 1.LAIC, IUT Dépt InformatiqueUniv. Clermont 1AubièreFrance

Personalised recommendations