Efficient Lattice Width Computation in Arbitrary Dimension
Conference paper
Abstract
We provide an algorithm for the exact computation of the lattice width of an integral polygon K in linear-time with respect to the size of K. Moreover, we describe how this new algorithm can be extended to an arbitrary dimension thanks to a greedy approach avoiding complex geometric processings.
Keywords
Convex Hull Convex Body Arbitrary Dimension Integer Point Supporting Line
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Arnold, V.I.: Higher dimensional continued fractions. Regular and chaotic dynamics 3, 10–17 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 2.Barvinok, A.: A Course in Convexity. Graduates Studies in Mathematics, vol. 54. Amer. Math. Soc, Providence (2002)MATHGoogle Scholar
- 3.Boyce, J.E., Dobkin, D.P., Drysdale, R.L., Guibas, L.J.: Finding extremal polygons. In: STOC, pp. 282–289 (1982)Google Scholar
- 4.Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12, 27–37 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 5.de Berg, M., Schwarzkopf, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
- 6.Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. IJPRAI 9(4), 635–662 (1995)Google Scholar
- 7.Dobkin, D.P., Snyder, L.: On a general method for maximizing and minimizing among certain geometric problems. In: SFCS 1979: Proceedings of the 20th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 9–17. IEEE Computer Society, Los Alamitos (1979)Google Scholar
- 8.Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Math. Program. Ser. A 102, 249–259 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 9.Eisenbrand, F., Rote, G.: Fast 2-variable integer programming. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 78–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 10.Feschet, F.: The exact lattice width of planar sets and minimal arithmetical thickness. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 25–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 11.Feschet, F.: The lattice width and quasi-straightness in digital spaces. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4. IEEE, Los Alamitos (2008)Google Scholar
- 12.Fleischer, R., Mehlhorn, K., Rote, G., Welzl, E., Yap, C.-K.: Simultaneous inner and outer approximation of shapes. Algorithmica 8(5&6), 365–389 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 13.Harvey, W.: Computing two-dimensional Integer Hulls. SIAM Journal on Computing 28(6), 2285–2299 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 14.Hirschberg, D., Wong, C.K.: A polynomial-time algorithm for the knapsack problem with two variables. J. Assoc. Comput. Mach. 23, 147–154 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 15.Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 761–765 (1988)CrossRefMATHGoogle Scholar
- 16.Hübler, A., Klette, R., Voss, K.: Determination of the convex hull of a finite set of planar points within linear time. Elektronische Informationsverarbeitung und Kybernetik 17(2/3), 121–139 (1981)MathSciNetMATHGoogle Scholar
- 17.Kaib, M., Schnörr, C.-P.: The Generalized Gauss Reduction Algorithm. Journal of Algorithms 21(3), 565–578 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 18.Kannan, R.: A polynomial algorithm for the two variable integer programming problem. J. Assoc. Comput. Mach. 27, 118–122 (1980)MathSciNetCrossRefMATHGoogle Scholar
- 19.Lachaud, G.: Klein polygons and geometric diagrams. Contemporary Math. 210, 365–372 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 20.Lachaud, G.: Sails and klein polyhedra. Contemporary Math. 210, 373–385 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 21.Lenstra, H.W.: Integer Programming with a Fixed Number of Variables. Math. Oper. Research 8, 535–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 22.Lyashko, S.I., Rublev, B.V.: Minimal ellipsoids and maximal simplexes in 3D euclidean space. Cybernetics and Systems Analysis 39(6), 831–834 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 23.Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
- 24.Rote, G.: Finding a shortest vector in a two-dimensional lattice modulo m. Theoretical Computer Science 172(1-2), 303–308 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 25.Scarf, H.E.: Production sets with indivisibilities part i and part ii. Econometrica 49, 1–32, 395–423 (1981)MathSciNetCrossRefMATHGoogle Scholar
- 26.Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1998)MATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009