The 1-Color Problem and the Brylawski Model

  • S. Brocchi
  • A. Frosini
  • S. Rinaldi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)


In discrete tomography, the 1-color problem consists in determining the existence of a binary matrix with row and column sums equal to some given input values arranged in two vectors. These two vectors are said to be compatible if the associated 1-color problem has at least a solution. Here, we start from a vector of projections, and we define an algorithm to compute all the vectors compatible with it, then we show how to arrange them in a partial order structure, and we point out some of its combinatorial properties. Finally, we prove that this poset is a sublattice of the Brylawski lattice too, and we check some common properties.


Maximum Element Binary Matrix Combinatorial Property Integer Vector Vertical Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brocchi, S., Frosini, A., Rinaldi, S.: Solving some instances of the two color problem (submitted)Google Scholar
  2. 2.
    Brylawski, T.: The lattice of integer partitions. Discrete Math. 6, 210–219 (1973)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Goles, E., Kiwi, M.A.: Games on line graphs and sand piles. Theoret. Comput. Sci. 115, 321–349 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goles, E., Latapy, M., Magnien, C., Morvan, M., Phan, H.D.: Sandpile Models and Lattices: A Comprehensive Survey. Theoret. Comput. Sci. 322(2), 383–407 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goles, E., Morvan, M., Phan, H.D.: Sand piles and order structure of integer partitions. Discrete Appl. Math. 117, 51–64 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Herman, G., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhauser, Basel (1999)zbMATHGoogle Scholar
  7. 7.
    Herman, G., Kuba, A. (eds.): Advances in Discrete Tomography and Its Applications. Birkhauser, Basel (2007)Google Scholar
  8. 8.
    Kisielowski, C., Schwander, P., Baumann, F.H., Seibt, M., Kim, Y., Ourmazd, A.: An approach to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultramicroscopy 58, 131–155 (1995)CrossRefGoogle Scholar
  9. 9.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schwander, P., Kisielowski, C., Seibt, M., Baumann, F.H., Kim, Y., Ourmazd, A.: Mapping projected potential interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy. Phys. Rev. Lett. 71, 4150–4153 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Brocchi
    • 1
  • A. Frosini
    • 1
  • S. Rinaldi
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFirenzeItaly
  2. 2.Dipartimento di Scienze Matematiche ed InformaticheUniversità di SienaSienaItaly

Personalised recommendations