Advertisement

A Novel Algorithm for Distance Transformation on Irregular Isothetic Grids

  • Antoine Vacavant
  • David Coeurjolly
  • Laure Tougne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

In this article, we propose a new definition of the E2DT (Squared Euclidean Distance Transformation) on irregular isothetic grids such as quadtree/octree or run-length encoded d-dimensional images. We describe a new separable algorithm to compute this transformation on every grids, which is independent of the background representation. We show that our proposal is able to efficiently handle various kind of classical irregular two-dimensional grids in imagery, and that it can be easily extended to higher dimensions.

Keywords

Voronoi Diagram Regular Grid Cell Border Medial Axis Separable Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Coeurjolly, D., Zerarga, L.: Supercover Model, Digital Straight Line Recognition and Curve Reconstruction on the Irregular Isothetic Grids. Computer and Graphics 30(1), 46–53 (2006)CrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Montanvert, A.: Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 437–448 (2007)CrossRefGoogle Scholar
  3. 3.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean Distance Transform Algorithms: A Comparative Survey. ACM Computing surveys 40(1), 1–44 (2008)CrossRefGoogle Scholar
  5. 5.
    Fouard, C., Malandain, G.: 3-D Chamfer Distances and Norms in Anisotropic Grids. Image and Vision Computing 23(2), 143–158 (2005)CrossRefGoogle Scholar
  6. 6.
    Hesselink, W.H., Visser, M., Roerdink, J.B.T.M.: Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform. In: 7th International Symposium on Mathematical Morphology, pp. 259–268 (2005)Google Scholar
  7. 7.
    Karavelas, M.I.: Voronoi diagrams in CGAL. In: 22nd European Workshop on Computational Geometry (EWCG 2006), pp. 229–232 (2006)Google Scholar
  8. 8.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)zbMATHGoogle Scholar
  9. 9.
    Knoll, A.: A Survey of Octree Volume Rendering Techniques. In: 1st International Research Training Group Workshop (2006)Google Scholar
  10. 10.
    Maurer, C.R., Qi, R., Raghavan, V.: A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 265–270 (2003)CrossRefGoogle Scholar
  11. 11.
    Park, S.H., Lee, S.S., Kim, J.H.: The Delaunay Triangulation by Grid Subdivision. Computational Science and Its Applications, 1033–1042 (2005)Google Scholar
  12. 12.
    Plewa, T., Linde, T., Weirs, V. (eds.): Adaptive Mesh Refinement - Theory and Applications. In: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement in Computational Science and Engineering, vol. 41 (2005)Google Scholar
  13. 13.
    Rosenfeld, A., Pfalz, J.L.: Distance Functions on Digital Pictures. Pattern Recognition 1, 33–61 (1968)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saito, T., Toriwaki, J.: New Algorithms for n-dimensional Euclidean Distance Transformation. Pattern Recognition 27(11), 1551–1565 (1994)CrossRefGoogle Scholar
  15. 15.
    Sintorn, I.M., Borgefors, G.: Weighted Distance Transforms for Volume Images Digitized in Elongated Voxel Grids. Pattern Recognition Letters 25(5), 571–580 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Distance Transformation on Two-Dimensional Irregular Isothetic Grids. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 238–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Vacavant, A., Coeurjolly, D., Tougne, L.: A Novel Algorithm for Distance Transformation on Irregular Isothetic Grids. Technical report RR-LIRIS-2009-009 (2009), http://liris.cnrs.fr/publis/?id=3849
  18. 18.
    Vörös, J.: Low-Cost Implementation of Distance Maps for Path Planning Using Matrix Quadtrees and Octrees. Robotics and Computer-Integrated Manufacturing 17(6), 447–459 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antoine Vacavant
    • 1
    • 2
  • David Coeurjolly
    • 1
    • 3
  • Laure Tougne
    • 1
    • 2
  1. 1.Université de Lyon, CNRSFrance
  2. 2.LIRIS, UMR5205Université Lyon 2France
  3. 3.LIRIS, UMR5205Université Lyon 1France

Personalised recommendations