Appearance Radii in Medial Axis Test Mask for Small Planar Chamfer Norms

  • Jérôme Hulin
  • Édouard Thiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)


The test mask \({{\mathcal{T}}_{\mathcal{M}}}\) is the minimum neighbourhood sufficient to extract the medial axis of any discrete shape, for a given chamfer distance mask \({\mathcal{M}}\). We propose an arithmetical framework to study \({{\mathcal{T}}_{\mathcal{M}}}\) in the case of chamfer norms. We characterize \({{\mathcal{T}}_{\mathcal{M}}}\) for 3×3 and 5×5 chamfer norm masks, and we give an algorithm to compute the appearance radius of the vector (2,1) in \({{\mathcal{T}}_{\mathcal{M}}}\).


medial axis chamfer norm distance transform 


  1. 1.
    Pfaltz, J.L., Rosenfeld, A.: Computer Representation of Planar Regions by their Skeletons. Comm. of ACM 10, 119–125 (1967)CrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Hulin, J., Sivignon, I.: Finding a Minimum Medial Axis of a Discrete Shape is NP-hard. Theoretical Computer Science 206(1-2), 72–79 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coeurjolly, D., Montanvert, A.: Optimable Separable Algorithms to compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension. IEEE Trans. on PAMI 29(3), 437–448 (2007)CrossRefGoogle Scholar
  4. 4.
    Saúde, A.V., Couprie, M., Lotufo, R.A.: Discrete 2D and 3D euclidean medial axis in higher resolution. Image Vision Comput. 27(4), 354–363 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borgefors, G.: Distance Transformations in Arbitrary Dimensions. Computer Vision, Graphics and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  6. 6.
    Hirata, T.: A Unified Linear-time Algorithm for Computing Distance Maps. Information Processing letters 58(3), 12–133 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arcelli, C., Sanniti di Baja, G.: Finding Local Maxima in a Pseudo-Euclidean Distance Transform. Comp. Vision, Graphics and Image Proc. 43, 361–367 (1988)CrossRefGoogle Scholar
  8. 8.
    Borgefors, G.: Centres of Maximal Disks in the 5-7-11 Distance Transform. In: \(8^\text{th}\) Scandinavian Conf. on Image Analysis, Tromsø, Norway, pp. 105–111 (1993)Google Scholar
  9. 9.
    Rémy, E., Thiel, E.: Medial Axis for Chamfer Distances: Computing Look-up Tables and Neighbourhoods in 2D or 3D. Pattern Rec. Letters 23(6), 649–661 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rémy, E., Thiel, E.: Exact Medial Axis with Euclidean Distance. Image and Vision Computing 23(2), 167–175 (2005)CrossRefGoogle Scholar
  11. 11.
    The Npic library and tools,
  12. 12.
    Normand, N., Évenou, P.: Medial Axis LUT Computation for Chamfer Norms using H-polytopes. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 189–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Normand, N., Évenou, P.: Medial Axis Lookup Table and Test Neighborhood Computation for 3D Chamfer Norms. Pattern Rec. 42(10), 2288–2296 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hulin, J., Thiel, E.: Visible Vectors and Discrete Euclidean Medial Axis. Discrete and Computational Geometry (in press) (Available online December 10, 2008)Google Scholar
  15. 15.
    Thiel, E.: Géométrie des Distances de Chanfrein. Habilitation à Diriger les Rech., Univ. de la Méditerranée, (déc 2001),
  16. 16.
    Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford Lectures Series in Mathematics and its Applications 30 (2005)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jérôme Hulin
    • 1
  • Édouard Thiel
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de Marseille (LIF, UMR 6166)Aix-Marseille UniversitéMarseille cedex 9France

Personalised recommendations