A Discrete λ-Medial Axis

  • John Chaussard
  • Michel Couprie
  • Hugues Talbot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

The λ-medial axis was introduced in 2005 by Chazal and Lieutier as a new concept for computing the medial axis of a shape subject to filtering with a single parameter. These authors proved the stability of the λ-medial axis under small shape perturbations. In this paper, we introduce the definition of a discrete λ-medial axis (DLMA). We evaluate its stability and rotation invariance experimentally. The DLMA may be computed by efficient algorithms, furthermore we introduce a variant of the DLMA, denoted by DL’MA, which may be computed in linear-time. We compare the DLMA and the DL’MA with the recently introduced integer medial axis and show that both DLMA and DL’MA provide measurably better results.

References

  1. 1.
    Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of the medial axis — a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pp. 1–19. Springer, Heidelberg (to appear, 2009)Google Scholar
  2. 2.
    Attali, D., Lachaud, J.O.: Delaunay conforming iso-surface, skeleton extraction and noise removal. Comp. Geom.: Theory and Applications 19, 175–189 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Attali, D., Montanvert, A.: Modelling noise for a better simplification of skeletons. In: ICIP, vol. 3, pp. 13–16 (1996)Google Scholar
  4. 4.
    Attali, D., Sanniti di Baja, G., Thiel, E.: Pruning discrete and semicontinuous skeletons. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 488–493. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. Trans. on PAMI 29(3), 449–462 (2007)CrossRefGoogle Scholar
  6. 6.
    Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters 15, 1003–1011 (1994)CrossRefGoogle Scholar
  7. 7.
    Blum, H.: An associative machine for dealing with the visual field and some of its biological implications. Biol. prototypes and synthetic systems 1, 244–260 (1961)Google Scholar
  8. 8.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  9. 9.
    Chazal, F., Lieutier, A.: The λ-medial axis. Graph. Models 67(4), 304–331 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lyon II, France (2002)Google Scholar
  11. 11.
    Coeurjolly, D.: d-dimensional reverse Euclidean distance transformation and Euclidean medial axis extraction in optimal time. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 327–337. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. Trans. on PAMI 31(4), 637–648 (2009)CrossRefGoogle Scholar
  13. 13.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing 25(10), 1543–1556 (2007)CrossRefGoogle Scholar
  14. 14.
    Davies, E.R., Plummer, A.P.N.: Thinning algorithms: a critique and a new methodology. Pattern Recognition 14, 53–63 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dubuisson, M.-P., Jain, A.K.: A modified hausdorff distance for object matching. In: 12th ICPR, vol. 1, pp. 566–568 (1994)Google Scholar
  16. 16.
    Eden, M.: A two-dimensional growth process. In: Fourth Berkeley Symp. on Math. Statist. and Prob., vol. 4, pp. 223–239. Univ. of Calif. Press (1961)Google Scholar
  17. 17.
    Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. Trans. on PAMI 30(12), 2204–2217 (2008)CrossRefGoogle Scholar
  18. 18.
    Hesselink, W.H., Visser, M., Roerdink, J.B.T.M.: Euclidean skeletons of 3d data sets in linear time by the integer medial axis transform. In: 7th ISMM. Computational Imaging and Vision, vol. 30, pp. 259–268. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Yung Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comp. Vision, Graphics and Image Proc. 48, 357–393 (1989)CrossRefGoogle Scholar
  20. 20.
    Lee, T.M.C., Cowan, R.: A stochastic tesselation of digital space. In: 2nd ISMM, Fontainebleau, pp. 218–224. Kluwer, Dordrecht (1994)Google Scholar
  21. 21.
    Malandain, G., Fernández-Vidal, S.: Euclidean skeletons. Image and Vision Computing 16, 317–327 (1998)CrossRefGoogle Scholar
  22. 22.
    Matheron, G.: Examples of topological properties of skeletons, vol. 2, pp. 217–238. Academic Press, London (1988)Google Scholar
  23. 23.
    Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. Trans. on PAMI 25(2), 265–270 (2003)CrossRefGoogle Scholar
  24. 24.
    Ogniewicz, R.L., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28(33), 343–359 (1995)CrossRefGoogle Scholar
  25. 25.
    Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comp. Vision and Im. Understanding 72(3), 404–413 (1998)CrossRefGoogle Scholar
  26. 26.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. J. of Visual Comm. and Im. Representation 9(4), 366–380 (1998)CrossRefGoogle Scholar
  27. 27.
    Svensson, S., Sanniti di Baja, G.: Simplifying curve skeletons in volume images. Comp. Vision and Im. Understanding 90(3), 242–257 (2003)CrossRefMATHGoogle Scholar
  28. 28.
    Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: VCIP 1992, SPIE, vol. 1818, pp. 862–876 (1992)Google Scholar
  29. 29.
    Vincent, L.: Efficient computation of various types of skeletons. In: Medical Imaging V, SPIE, vol. 1445, pp. 297–311 (1991)Google Scholar
  30. 30.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • John Chaussard
    • 1
  • Michel Couprie
    • 1
  • Hugues Talbot
    • 1
  1. 1.LIGM, Équipe A3SI, ESIEE ParisUniversité Paris-EstFrance

Personalised recommendations