Surface Sketching with a Voxel-Based Skeleton

  • Jean-Luc Mari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

In this paper, we present a method to generate a first approximation surface from a volumic voxel-based skeleton. This approach preserves the topology described by the discrete skeleton in a 3D grid considering the 26-adjacency: if a cycle is sketched, then there is a hole in the resulting surface, and if a closed hull is designed, then the output has a cavity. We verify the same properties for connected components. This surrounding basic polyhedron is computed with simple geometrical rules, and can be a good starting point for 3D shape design from a discrete voxel skeleton. As an example application, we use this rough mesh as the control polyhedron of a subdivision surface in order to model multiresolution objects.

Keywords

Discrete geometry geometrical modeling voxel automatic mesh generation topological skeleton sketch 

References

  1. 1.
    Alexe, A., Barthe, L., Cani, M.-P., Gaildrat, V.: Shape modelling by sketching using convolution surfaces. In: Pacific Graphics (Short Papers), Macau, China (October 2005)Google Scholar
  2. 2.
    De Araujo, B., Jorge, J.: Blobmaker: free-form modelling with variational implicit surfaces. In: Proceedings of “12 ° Encontro Português de Computação Grafica” (12 ° EPCG), Porto, Portugal, pp. 17–26 (2003)Google Scholar
  3. 3.
    Bittar, E., Tsingos, N., Gascuel, M.-P.: Automatic reconstruction of unstructured 3D data: combining a medial axis and implicit surfaces. In: Computer Graphics Forum (Eurographics 1995 Proc.), vol. 14, pp. 457–468 (1995)Google Scholar
  4. 4.
    Blender.: Free open source 3d content creation suite, available for all major operating systems under the gnu general public license, http://www.blender.org/
  5. 5.
    Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M.-P., Rockwood, A., Wyvill, B., Wyvill, G.: Introduction to implicit surfaces. Computer Graphics and Geometric Modeling series. Morgan Kaufmann Publisher, San Francisco (1997)Google Scholar
  6. 6.
    Bloomenthal, J., Wyvill, B.: Interactives techniques for implicit modeling. Computer Graphics 24(2), 109–116 (1990)CrossRefGoogle Scholar
  7. 7.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10(6), 350–355 (1978)CrossRefGoogle Scholar
  8. 8.
    Cyrus, M., Beck, J.: Generalized two- and three-dimensional clipping. Computers and Graphics 3(1), 23–28 (1978)CrossRefGoogle Scholar
  9. 9.
    Doo, D., Sabin, M.: Analysis of the behaviour of recursive division surfaces near extraordinary points. Computer Aided Design 10(6), 356–360 (1978)CrossRefGoogle Scholar
  10. 10.
    Ferley, E., Cani, M.-P., Gascuel, J.-D.: Resolution adaptive volume sculpting. Graphical Models (GMOD), Special Issue on Volume Modelling 63, 459–478 (2001)MATHGoogle Scholar
  11. 11.
    Hoffmann, C.M.: Medial-axis approach to mesh generation. In: Lecture Notes: Princeton Conference, Computer Science Department. Purdue University (July 1996)Google Scholar
  12. 12.
    Kenmochi, Y., Imiya, A., Ichikawa, A.: Boundary extraction of discrete objects. Computer Vision and Image Understanding 71(3), 281–293 (1998)CrossRefGoogle Scholar
  13. 13.
    Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)Google Scholar
  14. 14.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: a high resolution 3D surface construction algorithm. Computer Graphics 21(4) (July 1987)Google Scholar
  15. 15.
    Mari, J.-L., Sequeira, J.: A new modeling approach by global and local characterization. In: 11th International Conference on Computer Graphics, GraphiCon 2001, Nizhny Novgorod, Russia, September 2001, pp. 126–131 (2001)Google Scholar
  16. 16.
    Mari, J.-L., Sequeira, J.: Closed free-form surface geometrical modeling – a new approach with global and local characterization. International Journal of Image and Graphics (IJIG) 4(2), 241–262 (2004)CrossRefGoogle Scholar
  17. 17.
    Markosian, L., Cohen, J.M., Crulli, T., Hugues, J.: Skin: a constructive approach to modeling free-form shapes. In: Computer Graphics Proceedings (SIGGRAPH 1999), pp. 393–400 (1999)Google Scholar
  18. 18.
    Schrőder, P., Zorin, D.: Subdivision for modeling and animation. In: Course notes of Siggraph 1998, ACM SIGGRAPH (1998)Google Scholar
  19. 19.
    Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Shape description by medial surface construction. IEEE Transactions On Visualization & Computer Graphics 2, 62–72 (1996)CrossRefGoogle Scholar
  20. 20.
    Sherstyuk, A.: Interactive shape design with convolution surfaces. In: Shape Modeling International 1999, International Conference on Shape Modeling and Applications, Aizu-Wakamatsu, Japan (March 1999)Google Scholar
  21. 21.
    Wyvill, B., McPheeters, C., Wyvill, G.: Animating soft objects. The Visual Computer 2(4), 235–242 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Luc Mari
    • 1
  1. 1.Information and System Science Laboratory (LSIS) Computer Graphics Team (“Image & Models”)University of Marseille 2, ESILMarseille cedex 9France

Personalised recommendations