Advertisement

Decomposing Cavities in Digital Volumes into Products of Cycles

  • Ainhoa Berciano
  • Helena Molina-Abril
  • Ana Pacheco
  • Paweł Pilarczyk
  • Pedro Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

The homology of binary 3–dimensional digital images (digital volumes) provides concise algebraic description of their topology in terms of connected components, tunnels and cavities. Homology generators corresponding to these features are represented by nontrivial 0–cycles, 1–cycles and 2–cycles, respectively. In the framework of cubical representation of digital volumes with the topology that corresponds to the 26–connectivity between voxels, we introduce a method for algorithmic computation of a coproduct operation that can be used to decompose 2–cycles into products of 1–cycles (possibly trivial). This coproduct provides means of classifying different kinds of cavities; in particular, it allows to distinguish certain homotopically non-equivalent spaces that have isomorphic homology. We define this coproduct at the level of a cubical complex built directly upon voxels of the digital image, and we construct it by means of the classical Alexander-Whitney map on a simplicial subdivision of faces of the voxels.

Keywords

homology cubical homology cubical set cell complex digital image cavity cycle Alexander Whitney diagonal chain homotopy algebraic gradient vector field 

References

  1. 1.
    Delfinado, C., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes on the 3–sphere. Comput. Aided Geom. Design 12, 771–784 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dey, T., Guha, S.: Computing homology groups of simplicial complexes in ℝ3. Journal of the ACM 45(2), 266–287 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    González-Diaz, R., Jiménez, M., Medrano, B., Molina-Abril, H., Real, P.: Integral operators for computing homology generators at any dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    González-Diaz, R., Real, P.: On the cohomology of 3d digital images. Discrete Applied Math. 147, 245–263 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology. Applied Mathematical Sciences (2004)Google Scholar
  6. 6.
    Mischaikow, K., Mrozek, M., Pilarczyk, P.: Graph approach to the computation of the homology of continuous maps. Foundations of Computational Mathematics 5(2), 199–229 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Molina-Abril, H., Real, P.: Cell at-models for digital volumes. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 314–323. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Mrozek, M., Pilarczyk, P., Żelazna, N.: Homology algorithm based on acyclic subspace. Computers and Mathematics with Applications 55, 2395–2412 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.: Computation of homology groups and generators. Computer & Graphics 30(1), 62–69 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Computational Homology Project, http://chomp.rutgers.edu/
  11. 11.
    Gameiro, M., Mischaikow, K., Kalies, W.: Topological Characterization of Spatial-Temporal Chaos. Physical Review E 70 3 (2004)Google Scholar
  12. 12.
    Gameiro, M., Pilarczyk, P.: Automatic homology computation with application to pattern classification. RIMS Kokyuroku Bessatsu B3, 1–10 (2007)Google Scholar
  13. 13.
    Krishan, K., Gameiro, M., Mischaikow, K., Schatz, M., Kurtuldu, H., Madruga, S.: Homology and symmetry breaking in Rayleigh-Bénard convection: Experiments and simulations. Physics of Fluids 19, 117105 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Niethammer, M., Stein, A., Kalies, W., Pilarczyk, P., Mischaikow, K., Tannenbaum, A.: Analysis of blood vessel topology by cubical homology. In: Proc. of the International Conference on Image Processing, vol. 2, pp. 969–972 (2002)Google Scholar
  15. 15.
    Żelawski, M.: Pattern recognition based on homology theory. Machine Graphics and Vision 14, 309–324 (2005)Google Scholar
  16. 16.
    Serre, J.: Homologie singulière des espaces fibrés, applications. Annals of Math. 54, 429–505 (1951)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  18. 18.
    Eilenberg, S., Mac Lane, S.: On the groups h(π,n), i, ii, iii. Annals of Math. 58, 60, 60, 55–106,48–139, 513–557 (1953, 1954)CrossRefGoogle Scholar
  19. 19.
    Sergeraert, F.: The computability problem in algebraic topology. Advances in Mathematics 104, 1–29 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Barnes, D.W., Lambe, L.A.: A fixed point approach to homological perturbation theory. Proc. Amer. Math. Soc. 112, 881–892 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Forman, R.: A Discrete Morse Theory for Cell Complexes. In: Yau, S.T. (ed.) Topology and Physics for Raoul Bott. International Press (1995)Google Scholar
  22. 22.
    Molina-Abril, H., Real, P.: Advanced homological information on 3d digital volumes. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 361–371. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    González-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic topological analysis of time-sequence of digital images. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ainhoa Berciano
    • 1
  • Helena Molina-Abril
    • 2
  • Ana Pacheco
    • 2
  • Paweł Pilarczyk
    • 3
  • Pedro Real
    • 2
  1. 1.Departamento de Didactica de la Matematica y de las CC. ExperimentalesUniversidad del Pais Vasco-Euskal Herriko UnibertsitateaBilbao (Bizkaia)Spain
  2. 2.Departamento de Matematica Aplicada IUniversidad de SevillaAvenida Reina MercedesSpain
  3. 3.Centro de MatemáticaUniversidade do MinhoBragaPortugal

Personalised recommendations