Advertisement

Digital Deformable Model Simulating Active Contours

  • François de Vieilleville
  • Jacques-Olivier Lachaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

Deformable models are continuous energy-minimizing techniques that have been successfully applied to image segmentation and tracking since twenty years. This paper defines a novel purely digital deformable model (DDM), whose internal energy is based on the minimum length polygon (MLP). We prove that our combinatorial regularization term has “convex” properties: any local descent on the energy leads to a global optimum. Similarly to the continuous case where the optimum is a straight segment, our DDM stops on a digital straight segment. The DDM shares also the same behaviour as its continuous counterpart on images.

Keywords

Active Contour Deformable Model Active Contour Model Geodesic Active Contour Inside Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ardon, R., Cohen, L.D.: Fast constrained surface extraction by minimal paths. International Journal on Computer Vision 69(1), 127–136 (2006)Google Scholar
  2. 2.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proc. Int. Cof. Comput. Vis (ICCV 2003), Nice, France, November 2003, vol. 1, pp. 26–33 (2003)Google Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 394–398 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. Journal of Computer Vision 24(1), 57–78 (1997)CrossRefGoogle Scholar
  8. 8.
    Dupas, A., Damiand, G.: First results for 3D image segmentation with topological map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 507–518. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fejes, S., Rosenfeld, A.: Discrete active models and applications. Pattern Recognition 30(5), 817–835 (1997)CrossRefGoogle Scholar
  10. 10.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, pp. 564–584. Morgan Kaufmann Publishers Inc., San Francisco (1987)zbMATHGoogle Scholar
  11. 11.
    Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. In: SCG 1987: Proceedings of the third annual symposium on Computational geometry, pp. 50–63. ACM, New York (1987)CrossRefGoogle Scholar
  12. 12.
    Guigues, L., Le Men, H., Cocquerez, J.-P.: Scale-sets image analysis. In: Int. Conf. on Image Processing (ICIP 2003), vol. 2, pp. 45–48. IEEE, Los Alamitos (2003)Google Scholar
  13. 13.
    Imiya, A., Saito, M., Tatara, K., Nakamura, K.: Digital curvature flow and its applications for skeletonization. Journal of Mathematical Imaging and Vision 18, 55–68 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1988)Google Scholar
  15. 15.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  17. 17.
    Klette, R., Yip, B.: The length of digital curves. Machine Graphics Vision 9(3), 673–703 (2000) (Also research report CITR-TR-54, University of Auckland, NZ. 1999)Google Scholar
  18. 18.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modelling with Front Propagation: A Level Set Approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(2), 158–174 (1995)CrossRefGoogle Scholar
  19. 19.
    Montanari, U.: A note on minimal length polygonal approximation to a digitized contour. Commun. ACM 13(1), 41–47 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–684 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  22. 22.
    Sloboda, F., Stoer, J.: On piecewise linear approximation of planar jordan curves. J. Comput. Appl. Math. 55(3), 369–383 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sloboda, F., Stoer, J.: On piecewise linear approximation of planar jordan curves. Journal of Computational and Applied Mathematics 55, 369–383 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sloboda, F., Zat́ko, B.: On one-dimensional grid continua in r2. Technical report, Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, Slovakia (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François de Vieilleville
    • 1
  • Jacques-Olivier Lachaud
    • 1
  1. 1.Laboratoire de MathématiquesUMR CNRS 5127, Université de SavoieLe-Bourget-du-LacFrance

Personalised recommendations