Marching Triangle Polygonization for Efficient Surface Reconstruction from Its Distance Transform

  • Marc Fournier
  • Jean-Michel Dischler
  • Dominique Bechmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

In this paper we propose a new polygonization method based on the classic Marching Triangle algorithm. It is an improved and efficient version of the basic algorithm which produces a complete mesh without any cracks. Our method is useful in the surface reconstruction process of scanned objects. It works over the scalar field distance transform of the object to produce the resulting triangle mesh. First we improve the original algorithm in finding new potential vertices in the mesh growing process. Second we modify the Delaunay sphere test on the new triangles. Third we consider new triangles configuration to obtain a more complete mesh. Finally we introduce an edge processing sequence to improve the overall Marching Triangle algorithm. We use a relevant error metric tool to compare results and show our new method is more accurate than Marching Cube which is the most widely used triangulation algorithm in the surface reconstruction process of scanned objects.

Keywords

Marching Triangle Scalar field distance transform Polygonization algorithm Surface reconstruction 3D scanned objects Triangle mesh surface 

References

  1. 1.
    Rocchini, C., Cignoni, P., Montani, C., Pingi, P., Scopigno, R.: A Low Cost 3D Scanner Based on Structured Light. In: EUROGRAPHICS 2001, Manchester, UK, vol. 20(3) (2001)Google Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A Method of Registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Implicit Surface-Based Geometric Fusion. Computer Vision and Image Understanding 69(3), 273–291 (1998)CrossRefGoogle Scholar
  4. 4.
    Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling Holes in Complex Surfaces Using Volumetric Diffusion. In: First International Symposium on 3D Data Processing, Visualization, and Transmission, Padua, Italy, pp. 428–438 (2002)Google Scholar
  5. 5.
    Fournier, M., Dischler, J.-M., Bechmann, D.: 3D Distance Transform Adaptive Filtering for Smoothing and Denoising Triangle Meshes. In: International Conference on Computer Graphics and Interactive Techniques, Kuala Lumpur, Malaysia, pp. 407–416 (2006)Google Scholar
  6. 6.
    Nooruddin, F.S., Turk, G.: Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Visualization and Computer Graphics 9(2), 191–205 (2003)CrossRefGoogle Scholar
  7. 7.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm. In: ACM SIGGRAPH 1987, Anaheim, USA, Computer Graphics, pp. 163–169 (1987)Google Scholar
  8. 8.
    Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles: Range Image Fusion for Complex Object Modelling. In: International Conference on Image Processing, Lausanne, Switzerland, vol. 1 (1996)Google Scholar
  9. 9.
    Nielson, G.M., Hamann, B.: The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes. In: IEEE Conference on Visualization 1991, San Diego, USA, pp. 83–91 (1991)Google Scholar
  10. 10.
    Chernyaev, E.V.: Marching Cubes 33: Construction of Topologically Correct Isosurfaces. Tech. Report, No. CN/95-17, CERN, Geneva, Switzerland (1995)Google Scholar
  11. 11.
    Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient Implementation of Marching Cubes Cases with Topological Guarantees. Journal of Graphics Tools 8(2) (2003)Google Scholar
  12. 12.
    Chien-Chang, H., Fu-Che, W., Bing-Yu, C., Yung-Yu, C., Ming, O.: Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data. In: EUROGRAPHICS 2005, Dublin, Ireland, Computer Graphics Forums, vol. 24(3) (2005)Google Scholar
  13. 13.
    Chan, S.L., Purisima, E.O.: A New Tetrahedral Tesselation Scheme for Isosurface Generation. Computers and Graphics 22(1), 83–90 (1998)CrossRefGoogle Scholar
  14. 14.
    Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.P.: Feature Sensitive Surface Extraction from Volume Data. In: ACM SIGGRAPH 2001, Los Angeles, USA. Computer Graphics (2001)Google Scholar
  15. 15.
    Zhang, N., Hong, W., Kaufman, A.: Dual Contouring with Topology-Preserving Simplification Using Enhanced Cell Representation. In: IEEE Visualization, Austin, USA, pp. 505–512 (2004)Google Scholar
  16. 16.
    Fournier, M., Dischler, J.-M., Bechmann, D.: A New Vector Field Distance Transform and its Application to Mesh Processing from 3D Scanned Data. The Visual Computer Journal 23(9-11), 915–924 (2007)CrossRefGoogle Scholar
  17. 17.
    Gopi, M., Krishnan, S., Silva, C.T.: Surface Reconstruction Based on Lower Dimensional Localized Delaunay Triangulation. Computer Graphics Forum 19(3) (2000)Google Scholar
  18. 18.
    Hartmann, E.: A Marching Method for the Triangulation of Surfaces. The Visual Computer 14(3), 95–108 (1998)CrossRefMATHGoogle Scholar
  19. 19.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics 5(4), 349–359 (1999)CrossRefGoogle Scholar
  20. 20.
    Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization Using Marching Triangles. Computer Graphics Forum 20(2), 67–80 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Karkanis, T., Stewart, A.J.: Curvature-Dependent Triangulation of Implicit Surfaces. IEEE Computer Graphics and Applications 21(2), 60–69 (2001)CrossRefGoogle Scholar
  22. 22.
    Araujo, B.R., Jorge, J.A.P.: Curvature Dependent Polygonization of Implicit Surfaces. In: Brazilian Symposium on Computer Graphics and Image Processing, Curitiba, Brazil (2004)Google Scholar
  23. 23.
    Xi, Y., Duan, Y.: A Region-Growing Based Iso-Surface Extraction Algorithm. In: IEEE International Conference on Computer-Aided Design and Computer Graphics, Beijing, China, pp. 120–125 (2007)Google Scholar
  24. 24.
    McCormick, N.H., Fisher, R.B.: Edge-Constrained Marching Triangles. In: International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy (2002)Google Scholar
  25. 25.
    Moller, T.: A Fast Triangle-Triangle Intersection Test. Journal of Graphics Tools 2(2), 25–30 (1997)CrossRefGoogle Scholar
  26. 26.
    Hilton, A., Illingworth, J.: Marching Triangles: Delaunay Implicit Surface Triangulation. Tech. Rep. EPSRC-GR/K04569, Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, UK, 1-12 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marc Fournier
    • 1
  • Jean-Michel Dischler
    • 1
  • Dominique Bechmann
    • 1
  1. 1.Image Sciences, Computer Sciences and Remote Sensing LaboratoryLSIIT – UMR 7005 – CNRS – Louis Pasteur UniversityStrasbourgFrance

Personalised recommendations