Two Linear-Time Algorithms for Computing the Minimum Length Polygon of a Digital Contour

  • Xavier Provençal
  • Jacques-Olivier Lachaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)

Abstract

The Minimum Length Polygon (MLP) is an interesting first order approximation of a digital contour. For instance, the convexity of the MLP is characteristic of the digital convexity of the shape, its perimeter is a good estimate of the perimeter of the digitized shape. We present here two novel equivalent definitions of MLP, one arithmetic, one combinatorial, and both definitions lead to two different linear time algorithms to compute them.

Keywords

Convex Hull Simple Polygon Polygonal Line Quadrant Vector Lyndon Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Montanari, U.: A note on minimal length polygonal approximation to a digitized contour. Communications of the ACM 13(1), 41–47 (1970)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhouettes. IEEE Trans. Computers 21(3), 260–268 (1972)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: SODA 1993: Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pp. 93–102. Society for Industrial and Applied Mathematics, Philadelphia (1993)Google Scholar
  4. 4.
    Klette, R., Yip, B.: The length of digital curves. Machine Graphics Vision 9(3), 673–703 (2000) (Also research report CITR-TR-54, University of Auckland, NZ. 1999)Google Scholar
  5. 5.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)CrossRefGoogle Scholar
  6. 6.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  7. 7.
    Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55(3), 369–383 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sloboda, F., Zat́ko, B.: On one-dimensional grid continua in R\(\hat{~}\)2. Technical report, Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, Slovakia (1996)Google Scholar
  9. 9.
    Sloboda, F., Zat́ko, B.: On approximation of jordan surfaces in 3D. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 365–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. In: SCG 1987: Proceedings of the third annual symposium on Computational geometry, pp. 50–63. ACM, New York (1987)CrossRefGoogle Scholar
  11. 11.
    Klette, R., Kovalevsky, V., Yip, B.: On length estimation of digital curves. In: Vision geometry VIII, SPIE Proceedings, vol. 3811, pp. 117–128 (1999)Google Scholar
  12. 12.
    Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 145–160. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007); Discrete Geometry for Computer Imagery 2005CrossRefGoogle Scholar
  14. 14.
    Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009); Selected papers from the 14th IAPR International Conference on Discrete Geometry for Computer Imagery 2008CrossRefMATHGoogle Scholar
  16. 16.
    Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  17. 17.
    Christoffel, E.B.: Observatio arithmetica. Annali di Mathematica 6, 145–152 (1875)Google Scholar
  18. 18.
    Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor. Nombres Bordeaux 5(1), 23–51 (1993)CrossRefGoogle Scholar
  19. 19.
    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words of CRM Monograph Series, vol. 27. American Mathematical Society, Providence (2009); Christoffel words and repetitions in wordsMATHGoogle Scholar
  20. 20.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23(3), 207–210 (1978)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lothaire, M.: Applied combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 105. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoret. Comput. Sci. 178(1-2), 171–203 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xavier Provençal
    • 1
    • 2
  • Jacques-Olivier Lachaud
    • 1
  1. 1.Laboratoire de MathématiquesUMR 5127 CNRS, Université de SavoieLe Bourget du LacFrance
  2. 2.LIRMMUMR 5506 CNRS, Université Montpellier IIMontpellierFrance

Personalised recommendations