Skip to main content

An Optimization Algorithm Based on Harmony Search for RNA Secondary Structure Prediction

  • Chapter
Recent Advances In Harmony Search Algorithm

Abstract

The determination of RNA molecules function relies heavily on its secondary structure. The current physical methods for RNA structure determination are time consuming and expensive. Hence, the methods of computational prediction of structure are the better alternatives. Various algorithms have been used for the RNA structure prediction, including dynamic programming and meta-heuristic algorithms. This chapter proposes the meta-heuristic harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similarity to the native structure. HSRNAFold is compared to dynamic programming techniques: RNAFold and the benchmark, Mfold. The results show that HSRNAFold is comparable to dynamic programming in finding the minimum free energies in all RNA test sequences. The proposed method is efficient and promising in predicting the RNA secondary structure based on the minimum free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doudna, J.A., Cech, T.R.: The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002)

    Article  Google Scholar 

  2. Hansen, J.L., Schmeing, T.M., Moore, P.B., et al.: Structural insights into peptide bond formation. Proceedings of the National Academy of Sciences, 11670–11675 (2002)

    Google Scholar 

  3. Tsang, H.H., Wiese, K.C.: SARNA-Predict: A study of RNA secondary structure prediction using different annealing schedules. In: Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 239–246 (2007)

    Google Scholar 

  4. Neethling, M., Engelbrecht, A.P.: Determining RNA Secondary Structure using Set-based Particle Swarm Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp. 1670–1677 (2006)

    Google Scholar 

  5. Wiese, K.C., Glen, E., Vasudevan, A.: jViz.RNA - A Java Tool for RNA Secondary Structure Visualization. IEEE Transactions on NanoBioscience 4, 212–218 (2005)

    Article  Google Scholar 

  6. Doshi, K.J., Cannone, J.J., Cobaugh, C.W., et al.: Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5, 1471–2105 (2004)

    Article  Google Scholar 

  7. Deschênes, A.A.: A genetic algorithm for RNA secondary structure prediction using stacking energy thermodyamic models. Master’s thesis, Simon Fraser University (2005)

    Google Scholar 

  8. Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of secondary structure in ribonucleic acids. Nature 230, 362–367 (1971)

    Article  Google Scholar 

  9. Mathews, D.H.: Revolutions in RNA secondary structure prediction. Journal of Molecular Biology 359, 526–532 (2006)

    Article  Google Scholar 

  10. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids. Res. 9, 133–148 (1981)

    Article  Google Scholar 

  11. Zuker, M.: Prediction of RNA Secondary Structure by Energy Minimization. In: Annette, M.G., Hugh, G.G. (eds.) Computer Analysis of Sequence Data, pp. 267–294. Humana Press (1994)

    Google Scholar 

  12. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 3406–3415 (2003)

    Article  Google Scholar 

  13. Hofacker, I.L., Fontana, W., Stadler, P.F., et al.: Fast folding and comparison of RNA secondary structures (The Vienna RNA Package). Monatshefte f. Chemie 125, 167–188 (1994)

    Article  Google Scholar 

  14. Wiese, K.C., Hendriks, A.: Comparison of P-RnaPredict and mfold algorithms for RNA secondary structure prediction. Bioinformatics 22, 934–942 (2006)

    Article  Google Scholar 

  15. Wiese, K.C., Deschnes, A., Hendriks, A.: Rnapredict - an evolutionary algorithm for RNA secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5, 25–41 (2007)

    Article  Google Scholar 

  16. Tsang, H.H., Wiese, K.C.: The signifcance of thermodynamic models in the accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, pp. 3879–3885 (2007)

    Google Scholar 

  17. Geis, M., Middendorf, M.: A Particle Swarm Optimizer for Finding Minimum Free Energy RNA Secondary Structures. In: Proceedings of IEEE Swarm Intelligence Symposium, SIS 2007 (2007)

    Google Scholar 

  18. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  19. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation 188, 1567–1579 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  21. Yang, X.-S.: Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (ed.) Music-Inspired Harmony Search Algorithm. Springer, Heidelberg (2009)

    Google Scholar 

  22. Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Applied Mathematics and Computation 198, 643–656 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hendriks, A.: A parallel evolutionary algorithm for RNA secondary structure prediction. Master’s thesis, Simon Fraser University (2005)

    Google Scholar 

  24. Mohsen, A.M., Khader, A.T., Ramachandram, D., et al.: Finding the minimum free energy RNA Secondary Structures using Harmony Search Algorithm. In: WCSET 2009, Singapore (2009)

    Google Scholar 

  25. Cannone, J.J., Subramanian, S., Schnare, M.N., et al.: The comparative rna web (crw) site: an online database of comparative sequence and structure information for ribosomal, intron, and other rnas. BMC Bioinformatics 3, 169–172 (2002)

    Google Scholar 

  26. Mohsen, A.M., Khader, A.T., Ramachandram, D.: Comparison of HSRNAFold and RNAFold algorithms for RNA secondary structure prediction. In: TENCON 2009, Singapore (accepted, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohsen, A.M., Khader, A.T., Ramachandram, D. (2010). An Optimization Algorithm Based on Harmony Search for RNA Secondary Structure Prediction. In: Geem, Z.W. (eds) Recent Advances In Harmony Search Algorithm. Studies in Computational Intelligence, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04317-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04317-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04316-1

  • Online ISBN: 978-3-642-04317-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics