Skip to main content

The Functions of Insulin-like Peptides in Insects

  • Chapter
  • First Online:
IGFs:Local Repair and Survival Factors Throughout Life Span

Abstract

The insulin/Igf-like signalling pathway plays key biological roles in diverse organisms, in growth and development, fecundity, stress resistance, metabolism and lifespan. The identity and functions of insulin-like peptides in mammals are well documented. Although genes encoding related peptides are present in the genomes of invertebrates, often in multiple copies, their biological roles are less well understood. Seven such genes are present in the fruit fly Drosophila melanogaster, they show higher sequence homology to insulin than to other mammalian peptides. Evolutionary conservation of different regions of the peptides among Drosophila species suggests that they are cleaved, like insulin. Each Drosophila Insulin Like Peptide (DILP) is expressed in a characteristic tissue-and stage- specific manner, suggesting that they may have unique biological functions. Ablation of neurosecretory cells in the brain that produce 3 of the DILPs results in an array of phenotypes, including developmental delay, reduced body size, stress resistance, metabolic phenotypes, reduced fecundity and increased lifespan, but assignment of these phenotypes to individual DILPs awaits genetic analysis. ILPs are also present in other insects, including the silk moth (38 genes), the honey bee (2 genes), and two mosquito species (7–8 genes), and insulin binding proteins have also been found in insects. Given the diverse and central functions of insulin/Igf-like signalling, deeper understanding of the roles of these invertebrate insulin-like peptides and the mechanisms by which they achieve them will throw deeper light on the functioning of this system in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alic N, Partridge L (2008) Stage debut for the elusive Drosophila insulin-like growth factor binding protein. J Biol 7:18

    Google Scholar 

  • Ament SA, Corona MS, Pollock HS, Robinson GE (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci USA 105:4226–4231

    Article  CAS  PubMed  Google Scholar 

  • Andersen AS, Hertzs HP, Schäffer HP, Kristensen C (2000) A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related peptides and inhibits their activities J Biol Chem 275:16948–16953

    Article  CAS  Google Scholar 

  • Arquier N, Geminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Leopold P (2008) Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 7(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Badisco L, Claeys I, Van Loy T, Van Hiel M, Franssens V, Simonet G,Vanden Broeck JG (2007) Neuroparsins, a family of conserved arthropod neuropeptides. Gen Comp Endocrinol 153:64–71

    Article  CAS  PubMed  Google Scholar 

  • Badisco L, Claeys I, Van Hiel M, Clynen E, Huybrechts J, Vandersmissen T, Van Soest S, Vanden Bosch L, Simonet G, Vanden Broeck J (2008) Purification and characterization of an insulin-related peptide in the desert locust, Schistocerca gregaria: immunolocalization, cDNA cloning, transcript profiling and interaction with neuroparsin. J Mol Endocrinol 40:137–150

    Article  CAS  PubMed  Google Scholar 

  • Bauer JH,Chang C, Morris N, Hozier S, Andersen S, Waitzman JS, Helfand SL (2007) Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling. Proc Natl Acad Sci USA 104:13355–13360

    Article  CAS  PubMed  Google Scholar 

  • Baxter RC, Firth SM (1995) Modulation of human IGF binding protein-3 activity by structural modification. Prog Growth Factor Res 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Boureme D, Tamarelle M, Girardie J (1987) Production and characterization of antibodies to neuroparsins A and B isolated from the corpora cardiaca of the locust. Gen Comp Endocrinol 67:169–177

    Article  CAS  PubMed  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F,Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  CAS  PubMed  Google Scholar 

  • Broughton S, Alic N, Slack C, Bass T, Ikeya T, Vinti G, Tommasi AM, Driege Y, Hafen E, Partridge L (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS ONE 3:e3721

    Article  PubMed  Google Scholar 

  • Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 102:3105–3110

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, Lea AO (1998) Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem 273:3967–3971

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, Suderman RJ, Strand MR (2008) An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 105:5716–5721

    Article  CAS  PubMed  Google Scholar 

  • Buch S, Melcher C, Bauer M, Katzenberger J, Pankratz ML (2008) Opposing effects of dietary protein and sugar regulate a transcriptional target of Drosophila insulin-like peptide signaling. Cell Metab 7:321–332

    Article  CAS  PubMed  Google Scholar 

  • Claeys I, Simonet G, Van Loy T, De Loof A, Vanden Broeck A (2003) cDNA cloning and transcript distribution of two novel members of the neuroparsin family in the desert locust, Schistocerca gregaria. Insect Mol Biol 12:473–481

    Article  CAS  PubMed  Google Scholar 

  • Claeys I, Simonet G, Breugelmans B, Van Soest S, Franssens V, Sas F, De Loof A, Vanden Broeck J (2005) Quantitative real-time RT-PCR analysis in desert locusts reveals phase dependent differences in neuroparsin transcript levels. Insect Mol Biol 14:415–422

    Article  CAS  PubMed  Google Scholar 

  • Claeys I, Breugelmans B, Simonet G, Franssens V, Van Soest S, Broeck V (2006). “Regulation of Schistocerca gregaria neuroparsin transcript levels by juvenile hormone and 20-hydroxyecdysone.” Arch Insect Biochem Physiol 62:107–115

    Article  CAS  PubMed  Google Scholar 

  • Clynen E, Huybrechts J, Baggerman G, Van Doorn J, Van Der Horst D, De Loof A, Schoofs L (2003) Identification of a glycogenolysis-inhibiting peptide from the corpora cardiaca of locusts. Endocrinology 144:3441–3448

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Bieschke J, Perciavalle RM,. Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749

    Article  CAS  PubMed  Google Scholar 

  • Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity." Proc Natl Acad Sci USA 104:7128–7133

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo SV, Hartfelder K (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J Insect Physiol 54:1064–1071

    Article  PubMed  Google Scholar 

  • Dixit P, Patel N (1964) Insulin-like activity in larval foods of the honeybee. Nature 202:189–190

    Article  CAS  PubMed  Google Scholar 

  • Domene HM, Bengolea SV, Jasper HG, Boisclair YR (2005) Acid-labile subunit deficiency: phenotypic similarities and differences between human and mouse. J Endocrinol Invest 28(5 Suppl):43–46

    CAS  PubMed  Google Scholar 

  • Domene HM, Scaglia PA, Lteif A, Mahmud FH, Kirmani S, Frystyk J, Bedecarras P, Gutierrez M, Jasper HG (2007) Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations. J Clin Endocrinol Metab 92:4444–4450

    Article  CAS  PubMed  Google Scholar 

  • Fournier B, Girardie J (1988) A new function for the locust neuroparsins stimulation of water reabsorption. J Insect Physiol 34:309–313

    Article  CAS  Google Scholar 

  • Giannakou ME, Goss M, Junger MA, Hafen E, Leevers S, Partridge L (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361

    Article  CAS  PubMed  Google Scholar 

  • Girardie J, Bouime D, Couillaud F, Tamarelle M, Girardie A (1987)Anti-juvenile effect of Neuroparsin A, a neuroprotein isolated from locust corpora cardiaca. Insect Biochem 17:977–983

    Article  CAS  Google Scholar 

  • Goltzene F, Holder F, Charlet M, Meister M, Oka T (1992) Immunocytochemical localization of Bombyx-PTTH-like molecules in neurosecretory cells of the brain of the migratory locust, Locusta migratoria. A comparison with neuroparsin and insulin-related peptide. Cell Tissue Res 269:133–140

    Article  CAS  PubMed  Google Scholar 

  • Graf R, Neuenschwander S, Brown MR, Ackermann U (1997) Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegypti. Insect Mol Biol 6:151–163

    Article  CAS  PubMed  Google Scholar 

  • Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397

    Article  CAS  PubMed  Google Scholar 

  • Hietter H, Van Dorsselaer A, Luu B (1991) Characterization of three structurally-related 8–9 kDa monomeric peptides present in the corpora cardiaca of Locusta: A revised structure for the Neuroparsins. Insect Biochem 21:259–264

    Article  CAS  Google Scholar 

  • Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7:10

    Article  PubMed  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci USA 106:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, Rueppell O, Guzman-Novoa E, Arechavaleta-Velasco M, Chandra S, Fondrk MK, Beye M, Page RE Jr. (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94:247–267

    Article  CAS  PubMed  Google Scholar 

  • Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20:761–787

    Article  CAS  PubMed  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  CAS  PubMed  Google Scholar 

  • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki H (2004)Molecular characterization of the brain secretory peptides, prothoracicotropic hormone (PTTH) and bombyxin, of the silkmoth Bombyx mori. Proc Jpn Acad 5:195–203

    Google Scholar 

  • Janssen TI, Claeys I, Simonet G, De Loof A, Girardie J, Venden Broeck J (2001) cDNA cloning and transcript distribution of two different neuroparsin precursors in the desert locust, Schistocerca gregaria. Insect Mol Biol 10:183–189

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Mott TM, Tapley EC, Lewis EE, Luckhart S (2008) Insulin regulates aging and oxidative stress in Anopheles stephensi. J Exp Biol 211(Pt 5):741–748

    Article  CAS  PubMed  Google Scholar 

  • Keller L,. Genoud M (1997). Exraordinary lifespans in ants: a test of evolutionary theoroes of ageing. Nature 389:958–960

    Article  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  CAS  PubMed  Google Scholar 

  • Kramer JH, Tager H, Childs C, Speirs R (1977) Insulin-like hypoglycemic and immunological activities in honeybee royal jelly. J Insect Physiol 23:293–295

    Article  CAS  PubMed  Google Scholar 

  • Krieger MJ, Jahan N, Riehle MA, KCao C, Brown MR (2004) Molecular characterization of insulin-like peptide genes and their expression in the African malaria mosquito, Anopheles gambiae. Insect Mol Biol 13:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lagueux ME, Kromer E, Girardie E (1992) Cloning of a locusta cDNA encoding neuroparsin-A. Insect Biochem 511–516

    Google Scholar 

  • Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tater M, Yu K (2008) Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biol 10:468–475

    Article  CAS  PubMed  Google Scholar 

  • Li C, Kim K (2008) Neuropeptides. WormBook 1–36

    Google Scholar 

  • Mason ED, Konrad KD, Webb CD, Marsh JL (1994) Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev 8 1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Masumura M, Satake S, Saegusa H, Mizoguchi A (2000) Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen Comp Endocrinol 118:393–399

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Aliaga IS, Thor S, Gould AP (2008) Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol 6:e58

    Article  PubMed  Google Scholar 

  • Min KJ, Yamamoto, R, Buch S, Pankratz M, Tatar M (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7:199–206

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fujino M, Kitada C (1987) A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol 51:227–235

    Article  CAS  PubMed  Google Scholar 

  • Moreau L, Gourdoux L, Girardie J (1988) Neuroparsin: a new energetic neurohormone in the African locust. Arch Insect Biochem Physiol 8:135–145

    Article  CAS  Google Scholar 

  • Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Ishizaki H, Mizoguchi A, Fujiwawa Y, Suzuki A (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science 226:1344–1345

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Hatanaka H, Kohda D, Kataoka H, Nagasawa H, Isogai A, Ishizaki H, Suzuki A, Inagaki F (1995) Three-dimensional solution structure of bombyxin-II an insulin-like peptide of the silkmoth Bombyx mori: structural comparison with insulin and relaxin. J Mol Biol 253:749–758

    Article  CAS  PubMed  Google Scholar 

  • Natzle JE, Hammonds AS, Fristrom JW (1986) Isolation of genes active during hormone-induced morphogenesis in Drosophila imaginal discs. J Biol Chem 261:5575–5583

    CAS  PubMed  Google Scholar 

  • Nijhout HF, Grunert LW (2002) Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc Natl Acad Sci USA 99:15446–15450

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N, Yamanaka N, Satake H, Saegusa H, Kataoka H, Mizoguchi A (2009) An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori. Febs J 276:1221–1232

    Article  CAS  PubMed  Google Scholar 

  • Osterbur DL, Fristrom DK, Natzle JE, Tojo SJ, Fristrom JW (1988) Genes expressed during imaginal discs morphogenesis: IMP-L2, a gene expressed during imaginal disc and imaginal histoblast morphogenesis. Dev Biol 129:439–448

    Article  CAS  PubMed  Google Scholar 

  • O'Connor K, Baxter D (1985) The demonstration of insulin-like material in the honey bee Apis mellifera. Comparative Biochem Physiol B (81):755–760

    Google Scholar 

  • Pinkston JM, Garigan D, Hansen M, Kenyon C (2006) Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313:971–975

    Article  CAS  PubMed  Google Scholar 

  • Riehle MA, Brown MA (1999) Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Mol Biol 29:855–860

    Article  CAS  PubMed  Google Scholar 

  • Riehle MA, Fan Y, Cao C, Brown MR (2006) Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: expression, cellular localization, and phylogeny. Peptides 27:2547–2560

    Article  CAS  PubMed  Google Scholar 

  • Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298:172–175

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, Harmanson S, Ekker SC, O'Connor MB, Marsh JL (2001) Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 410:479–483

    Article  CAS  PubMed  Google Scholar 

  • Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Masumara M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, Mizoguchi A (1997) Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 118:349–357

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Nagata K, Kataoka H, Mizoguchi A (1999) Bombyxin secretion in the adult silkmoth Bombyx mori: sex-specificity and its correlation with metabolism. J Insect Physiol 45:939–945

    Article  CAS  PubMed  Google Scholar 

  • Seehuus SC, Norberg K, Gimsa U, Kekling T, Amdam GV (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci USA 103:962–967

    Article  CAS  PubMed  Google Scholar 

  • Selman CS, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadain F, Okkenhaug K, Schuster E, Blanc E, Piper MD, Al-Qassab H, Speakman JR, Carmignac D, Robinson IC, Thonton JM, Gems D, Partridge L, Withers DJ (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. Faseb J 22:807–818

    Article  CAS  PubMed  Google Scholar 

  • Sherwood OD (2004) Relaxin's physiological roles and other diverse actions. Endocr Rev 25:205–234

    Article  CAS  PubMed  Google Scholar 

  • Swanson L, Yu M, Nelson KS, Laprise P, Tepass U, Beitel GJ (2009) Drosophila Convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization. Genetics 181:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Thompson KL, Decker SJ, Rosner MR (1985) Identification of a novel receptor in Drosophila for both epidermal growth factor and insulin. Proc Natl Acad Sci USA 82:8443–8447

    Article  CAS  PubMed  Google Scholar 

  • Toth AL, Varala K, Newman TC, Miguez FE, Hutchinson SK, Willoughby DA, Simons JF, Egholm M, Hunt JH, Hudson Robinson GE (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318:441–444

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tulina N, Carlin DL, Rulifson EJ (2007) The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci USA 104:19873–19878

    Article  CAS  PubMed  Google Scholar 

  • Wessells RJ, Bodmer R (2007) Age-related cardiac deterioration: insights from Drosophila. Front Biosci 12:39–48

    Article  CAS  PubMed  Google Scholar 

  • Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R (2004) Insulin regulation of heart function in aging fruit flies. Nature Genet 36:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DE, Buck N, Evans JD (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15:597–602

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51:1–24

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Belawat, (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Partridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grönke, S., Partridge, L. (2010). The Functions of Insulin-like Peptides in Insects. In: Clemmons, D., Robinson, I., Christen, Y. (eds) IGFs:Local Repair and Survival Factors Throughout Life Span. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04302-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04302-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04301-7

  • Online ISBN: 978-3-642-04302-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics