Skip to main content

IGF Receptors in the Adult Brain

  • Chapter
  • First Online:
IGFs:Local Repair and Survival Factors Throughout Life Span

Abstract

IGF-I action in the brain is not limited to its growth-promoting effects during fetal and neonatal development. Significant effects of IGF-I in the adult brain have been demonstrated in various contexts. The potent neuroprotective action of IGF was discovered in vitro and has been confirmed in vivo. The proposed mechanisms of IGF-I neuroprotection depend on age, and very interesting implications of IGF signaling in neurodegeneration, notably in amyotrophic lateral sclerosis and Alzheimer's disease, have been observed. The rescue of neurons following IGF-I administration has been extensively studied in rodent models in which a cerebrovascular accident is caused by experimental ischemia/hypoxia. Discrepancies have arisen in the effects of IGF-I observed in vivo, possibly reflecting the different actions of exogenous and endogenous IGF-I. Further studies are needed to elucidate the intracellular mechanisms of neuronal death following hypoxia/ischemia and the role of IGF-I in this process. Growing evidence demonstrates the selective action of IGF-I on glial cells. However, few experimental models can address the specific roles of astrocytes and microglia in the neuronal rescue mediated by IGF signaling. Endothelial cells also respond to IGF-I, possibly mediating neuroprotective effects of IGF-I through the control of edema following CNS damage. Recent studies on longevity and aging suggest that decreased insulin/insulin-like signaling increases life span and survival. Similarly, caloric restriction reduces IGF-I levels in the circulation and in the brain, at the same time increasing the longevity of the organism. Paradoxically, excess IGF-I promotes neuronal survival in the brain and reduces the longevity of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20:2896–2903

    CAS  PubMed  Google Scholar 

  • Adem A, Ekblom J, Gillberg PG, Jossan SS, Hoog A, Winblad B, Aquilonius SM, Wang LH, Sara V (1994) Insulin-like growth factor-1 receptors in human spinal cord: changes in amyotrophic lateral sclerosis. J Neural Transm Gen Sect 97:73–84

    Article  CAS  PubMed  Google Scholar 

  • Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol 173:46–62

    Article  CAS  PubMed  Google Scholar 

  • Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31:120–125

    Article  CAS  PubMed  Google Scholar 

  • Antoniades HN, Galanopoulos T, Neville-Golden J, Maxwell M (1992) Expression of insulin-like growth factors I and II and their receptor mRNAs in primary human astrocytomas and meningiomas; in vivo studies using in situ hybridization and immunocytochemistry. Int J Cancer 50:215–222

    Article  CAS  PubMed  Google Scholar 

  • Ballotti R, Nielsen FC, Pringle N, Kowalski A, Richardson WD, Van Obberghen E, Gammeltoft S (1987) Insulin-like growth factor I in cultured rat astrocytes: expression of the gene, and receptor tyrosine kinase. EMBO J 6:3633–3639

    CAS  PubMed  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  CAS  PubMed  Google Scholar 

  • Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 11 Suppl 1:2–8

    Article  PubMed  Google Scholar 

  • Baron-Van Evercooren A, Olichon-Berthe C, Kowalski A, Visciano G, Van Obberghen E (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res 28:244–253

    Article  CAS  PubMed  Google Scholar 

  • Beilharz EJ, Williams CE, Dragunow M, Sirimanne ES, Gluckman PD (1995) Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res 29:1–14

    Article  CAS  PubMed  Google Scholar 

  • Beilharz EJ, Russo VC, Butler G, Baker NL, Connor B, Sirimanne ES, Dragunow M, Werther GA, Gluckman PD, Williams CE, Scheepens A (1998) Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury. Brain Res Mol Brain Res 59:119–134

    Article  CAS  PubMed  Google Scholar 

  • Breese CR, D'Costa A, Rollins YD, Adams C, Booze RM, Sonntag WE, Leonard S (1996) Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding protein 2 (IGF-BP2) in the hippocampus following cytotoxic lesion of the dentate gyrus. J Comp Neurol 369:388–404

    Article  CAS  PubMed  Google Scholar 

  • Brooker GJ, Kalloniatis M, Russo VC, Murphy M, Werther GA, Bartlett PF (2000) Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J Neurosci Res 59:332–341

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Gunn AJ, Bennet L, Wu D, George S, Gluckman PD, Shao XM, Guan J (2003) Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 23:739–747

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. Eur J Pharmacol 490:127–133

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nature Med 8:1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Cercek B, Fishbein MC, Forrester JS, Helfant RH, Fagin JA (1990) Induction of insulin-like growth factor I messenger RNA in rat aorta after balloon denudation. Circ Res 66:1755–1760

    CAS  PubMed  Google Scholar 

  • Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG (1997) Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 40:1–25

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–9

    CAS  PubMed  Google Scholar 

  • Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64

    CAS  PubMed  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Cheng B, Mattson MP (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 12:1558–1566

    CAS  PubMed  Google Scholar 

  • Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97:10236–10241

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM (1997) Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol 41:521–529

    Article  CAS  PubMed  Google Scholar 

  • Chernausek SD (1993) Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res 34:189–197

    Article  CAS  PubMed  Google Scholar 

  • Cho BB, Toledo-Pereyra LH (2008) Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 21:141–147

    Article  PubMed  Google Scholar 

  • Chu CR, Kaplan LD, Fu FH, Crossett LS, Studer RK (2004) Recovery of articular cartilage metabolism following thermal stress is facilitated by IGF-1 and JNK inhibitor. Am J Sports Med 32:191–196

    Article  PubMed  Google Scholar 

  • Clark RK, Lee EV, Fish CJ, White RF, Price WJ, Jonak ZL, Feuerstein GZ, Barone FC (1993) Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res Bull 31:565–572

    Article  CAS  PubMed  Google Scholar 

  • Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev Neurosci 2:806–819

    Article  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288

    Article  CAS  PubMed  Google Scholar 

  • D'Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90:10989–10993

    Article  PubMed  Google Scholar 

  • D'Mello SR, Borodezt K, Soltoff SP (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17:1548–1560

    PubMed  Google Scholar 

  • Delaney CL, Cheng HL, Feldman EL (1999) Insulin-like growth factor-I prevents caspase-mediated apoptosis in Schwann cells. J Neurobiol 41:540–548

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  CAS  PubMed  Google Scholar 

  • Dore S, Kar S, Quirion R (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci USA 94:4772–4777

    Article  CAS  PubMed  Google Scholar 

  • Dore S, Kar S, Zheng WH, Quirion R (2000) Rediscovering good old friend IGF-I in the new millenium: possible usefulness in Alzheimer's disease and stroke. Pharm Acta Helv 74:273–820

    Article  CAS  PubMed  Google Scholar 

  • Dunn SE (2000) Insulin-like growth factor I stimulates angiogenesis and the production of vascular endothelial growth factor. Growth Horm IGF Res 10 Suppl A:S41–42

    Article  PubMed  Google Scholar 

  • Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825

    Article  CAS  PubMed  Google Scholar 

  • Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Endres M, Piriz J, Gertz K, Harms C, Meisel A, Kronenberg G, Torres-Aleman I (2007) Serum insulin-like growth factor I and ischemic brain injury. Brain Res 1185:328–335

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  CAS  PubMed  Google Scholar 

  • Fernandez AM, de la Vega AG, Torres-Aleman I (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA 95:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36:249–266

    Article  CAS  PubMed  Google Scholar 

  • Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15:1172–1179

    CAS  PubMed  Google Scholar 

  • Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309

    CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Rodriguez JR, Torres-Aleman I (1997) Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J Neurocytol 26:479–490

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Sanz A, Mendez P (2006) Cross-talk between IGF-I and estradiol in the brain: focus on neuroprotection. Neuroendocrinology 84:275–279

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Banati RB, Wiessner C, Hossmann KA, Kreutzberg GW (1995a) Reactive microglia in cerebral ischaemia: an early mediator of tissue damage? Neuropathol Appl Neurobiol 21:277–289

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995b) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24:I84–90

    CAS  PubMed  Google Scholar 

  • Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams C, Nikolics K (1992) A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 182:593–599

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Williams C, Gunning M, Mallard C, Gluckman P (1993) The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab 13:609–616

    CAS  PubMed  Google Scholar 

  • Guan J, Williams CE, Skinner SJ, Mallard EC, Gluckman PD (1996) The effects of insulin-like growth factor (IGF)-1, IGF-2, and des-IGF-1 on neuronal loss after hypoxic-ischemic brain injury in adult rats: evidence for a role for IGF binding proteins. Endocrinology 137:893–898

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Beilharz EJ, Skinner SJ, Williams CE, Gluckman PD (2000) Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury. Brain Res 853:163–173

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Miller OT, Waugh KM, McCarthy DC, Gluckman PD (2001) Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience 105:299–306

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Gillardon F, Michaelidis TM, Hossmann KA (1999) Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis 14:117–124

    Article  CAS  PubMed  Google Scholar 

  • Hatton J, Rapp RP, Kudsk KA, Brown RO, Luer MS, Bukar JG, Chen SA, McClain CJ, Gesundheit N, Dempsey RJ, Young B (1997) Intravenous insulin-like growth factor-I (IGF-I) in moderate-to-severe head injury: a phase II safety and efficacy trial. J Neurosurg 86:779–786

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553

    Article  CAS  PubMed  Google Scholar 

  • Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tsujimoto Y, Ohtsuki T, Kuwabara K, Matsushita K, Yang G, Tanabe H, Martinou JC, Hori M, Yanagihara T (1998) Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice. Stroke 29:2616–2621

    CAS  PubMed  Google Scholar 

  • Lai EC, Felice KJ, Festoff BW, Gawel MJ, Gelinas DF, Kratz R, Murphy MF, Natter HM, Norris FH, Rudnicki SA (1997) Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology 49:1621–1630

    CAS  PubMed  Google Scholar 

  • Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17

    CAS  PubMed  Google Scholar 

  • Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M (1995) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 146:1045–1051

    CAS  PubMed  Google Scholar 

  • Li YM, Arkins S, McCusker RH, Jr., Donovan SM, Liu Q, Jayaraman S, Dantzer R, Kelley KW (1996) Macrophages synthesize and secrete a 25-kilodalton protein that binds insulin-like growth factor-I. J Immunol 156:64–72

    CAS  PubMed  Google Scholar 

  • Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8:1452–1460

    Article  CAS  PubMed  Google Scholar 

  • Linnik MD, Zobrist RH, Hatfield MD (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24:2002-8; discussion 2008–2009

    CAS  PubMed  Google Scholar 

  • Liu X, Linnington C, Webster HD, Lassmann S, Yao DL, Hudson LD, Wekerle H, Kreutzberg GW (1997) Insulin-like growth factor-I treatment reduces immune cell responses in acute non-demyelinative experimental autoimmune encephalomyelitis. J Neurosci Res 47:531–538

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH, 2nd (2001a) Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187:91–97

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Fawcett JR, Thorne RG, Frey WH, 2nd (2001b) Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett 308:91–94

    Article  CAS  PubMed  Google Scholar 

  • Long E, Huynh HT, Zhao X (1998) Involvement of insulin-like growth factor-1 and its binding proteins in proliferation and differentiation of murine bone marrow-derived macrophage precursors. Endocrine 9:185–192

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 101:9833–9838

    Article  CAS  PubMed  Google Scholar 

  • Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559–569

    Article  CAS  PubMed  Google Scholar 

  • Marks JL, Porte D, Jr., Baskin DG (1991) Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 5:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Mason JL, Ye P, Suzuki K, D'Ercole AJ, Matsushima GK (2000) Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J Neurosci 20:5703–5708

    CAS  PubMed  Google Scholar 

  • Masters BA, Werner H, Roberts CT, Jr., LeRoith D, Raizada MK (1991) Developmental regulation of insulin-like growth factor-I-stimulated glucose transporter in rat brain astrocytes. Endocrinology 128:2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Matthews CC, Feldman EL (1996) Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J Cell Physiol 166:323–331

    Article  CAS  PubMed  Google Scholar 

  • Matthews CC, Odeh HM, Feldman EL (1997) Insulin-like growth factor-I is an osmoprotectant in human neuroblastoma cells. Neuroscience 79:525–534

    Article  CAS  PubMed  Google Scholar 

  • Mueller RV, Hunt TK, Tokunaga A, Spencer EM (1994) The effect of insulinlike growth factor I on wound healing variables and macrophages in rats. Arch Surg 129:262–265

    CAS  PubMed  Google Scholar 

  • Mustafa A, Lannfelt L, Lilius L, Islam A, Winblad B, Adem A (1999) Decreased plasma insulin-like growth factor-I level in familial Alzheimer's disease patients carrying the Swedish APP 670/671 mutation. Dement Geriatr Cogn Disord 10:446–451

    Article  CAS  PubMed  Google Scholar 

  • Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    CAS  PubMed  Google Scholar 

  • O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL (2002) IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 39:85–97

    Article  PubMed  Google Scholar 

  • Olson EE, McKeon RJ (2004) Characterization of cellular and neurological damage following unilateral hypoxia/ischemia. J Neurol Sci 227:7–19

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Poe BH, Linville C, Riddle DR, Sonntag WE, Brunso-Bechtold JK (2001) Effects of age and insulin-like growth factor-1 on neuron and synapse numbers in area CA3 of hippocampus. Neuroscience 107:231–238

    Article  CAS  PubMed  Google Scholar 

  • Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378:70–87

    CAS  PubMed  Google Scholar 

  • Renier G, Clement I, Desfaits AC, Lambert A (1996) Direct stimulatory effect of insulin-like growth factor-I on monocyte and macrophage tumor necrosis factor-alpha production. Endocrinology 137:4611–4618

    Article  CAS  PubMed  Google Scholar 

  • Rice JE, 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141

    Article  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  • Rollero A, Murialdo G, Fonzi S, Garrone S, Gianelli MV, Gazzerro E, Barreca A, Polleri A (1998) Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology 38:73–79

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum WI (1997) Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J Neurotrauma 14:313–326

    Article  CAS  PubMed  Google Scholar 

  • Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 85:265–269

    Article  CAS  PubMed  Google Scholar 

  • Russell JW, Feldman EL (1999) Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm Metab Res 31:90–96

    Article  CAS  PubMed  Google Scholar 

  • Russell JW, Windebank AJ, Schenone A, Feldman EL (1998) Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J Neurobiol 36:455–467

    Article  CAS  PubMed  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147:418–427

    Article  CAS  PubMed  Google Scholar 

  • Sandberg Nordqvist AC, von Holst H, Holmin S, Sara VR, Bellander BM, Schalling M (1996) Increase of insulin-like growth factor (IGF)-1, IGF binding protein-2 and -4 mRNAs following cerebral contusion. Brain Res Mol Brain Res 38:285–293

    Article  CAS  PubMed  Google Scholar 

  • Scheven BA, Hamilton NJ (1991) Stimulation of macrophage growth and multinucleated cell formation in rat bone marrow cultures by insulin-like growth factor I. Biochem Biophys Res Commun 174:647–653

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Miller MS (1999) Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. Am J Pathol 155:1651–1660

    CAS  PubMed  Google Scholar 

  • Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092

    CAS  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature Rev Neurosci 7:194–206

    Article  CAS  Google Scholar 

  • Singleton JR, Feldman EL (2001) Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis 8:541–554

    Article  CAS  PubMed  Google Scholar 

  • Singleton JR, Randolph AE, Feldman EL (1996) Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res 56:4522–4529

    CAS  PubMed  Google Scholar 

  • Sobesky J, Zaro Weber O, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD (2005) Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 36:980–985

    Article  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138:3515–3120

    Article  CAS  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Bennett SA, Khan AS, Thornton PL, Cooney PT, Ingram RL, McShane T, Brunso-Bechtold JK (1999) Alterations in insulin-like growth factor-1 gene and protein expression and type 1 insulin-like growth factor receptors in the brains of ageing rats. Neuroscience 88:269–279

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28:28-30

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 114:3717–3725

    CAS  PubMed  Google Scholar 

  • Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  CAS  PubMed  Google Scholar 

  • Tagami M, Yamagata K, Nara Y, Fujino H, Kubota A, Numano F, Yamori Y (1997) Insulin-like growth factors prevent apoptosis in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. Lab Invest 76:603–612

    CAS  PubMed  Google Scholar 

  • Takahashi M, Macdonald RL (2004) Vascular aspects of neuroprotection. Neurol Res 26:862–869

    Article  CAS  PubMed  Google Scholar 

  • Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR (1993) Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect 5:165–176

    Article  CAS  PubMed  Google Scholar 

  • Thrift AG, Dewey HM, Macdonell RA, McNeil JJ, Donnan GA (2001) Incidence of the major stroke subtypes: initial findings from the North East Melbourne stroke incidence study (NEMESIS). Stroke 32:1732–1738

    CAS  PubMed  Google Scholar 

  • Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    CAS  PubMed  Google Scholar 

  • Torres-Aleman I (2000) Serum growth factors and neuroprotective surveillance: focus on IGF-1. Mol Neurobiol 21:153–160

    Article  CAS  PubMed  Google Scholar 

  • Torres-Aleman I, Naftolin F, Robbins RJ (1990) Trophic effects of insulin-like growth factor-I on fetal rat hypothalamic cells in culture. Neuroscience 35:601–608

    Article  CAS  PubMed  Google Scholar 

  • Torres-Aleman I, Barrios V, Berciano J (1998) The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology 50:772–776

    CAS  PubMed  Google Scholar 

  • van Dam PS, Aleman A (2004) Insulin-like growth factor-I, cognition and brain aging. Eur J Pharmacol 490:87–95

    Article  PubMed  CAS  Google Scholar 

  • Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27:81-86

    Article  CAS  PubMed  Google Scholar 

  • Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, Towfighi J, Hurn PD, Simpson IA (2001) Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab 21:52–60

    Article  CAS  PubMed  Google Scholar 

  • Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW (1999) A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc Natl Acad Sci USA 96:9879–9884

    Article  CAS  PubMed  Google Scholar 

  • Vincent AM, Mobley BC, Hiller A, Feldman EL (2004) IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 16:407–416

    Article  CAS  PubMed  Google Scholar 

  • Walter HJ, Berry M, Hill DJ, Logan A (1997) Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain. Endocrinology 138:3024–3034

    Article  CAS  PubMed  Google Scholar 

  • Wang CX, Shuaib A (2007) Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol 83:140–148

    Article  CAS  PubMed  Google Scholar 

  • Werther GA, Abate M, Hogg A, Cheesman H, Oldfield B, Hards D, Hudson P, Power B, Freed K, Herington AC (1990) Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization--relationship to IGF-I receptors. Mol Endocrinol 4:773–778

    Article  CAS  PubMed  Google Scholar 

  • Wilczak N, de Vos RA, De Keyser J (2003) Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet 361:1007–10011

    Article  CAS  PubMed  Google Scholar 

  • Willaime-Morawek S, Arbez N, Mariani J, Brugg B (2005) IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2? Brain Res Mol Brain Res 142:97–106

    Article  CAS  PubMed  Google Scholar 

  • Winston BW, Krein PM, Mowat C, Huang Y (1999) Cytokine-induced macrophage differentiation: a tale of 2 genes. Clin Invest Med 22:236–255

    CAS  PubMed  Google Scholar 

  • Yao DL, Liu X, Hudson LD, Webster HD (1996) Insulin-like growth factor-I given subcutaneously reduces clinical deficits, decreases lesion severity and upregulates synthesis of myelin proteins in experimental autoimmune encephalomyelitis. Life Sci 58:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  CAS  PubMed  Google Scholar 

  • Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 17:5085–5094

    Article  CAS  PubMed  Google Scholar 

  • Zheng WH, Kar S, Quirion R (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 62:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang Q, Yu Z, Zhang L, Tian D, Zhu S, Bu B, Xie M, Wang W (2007) Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 55:546–558

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Holzenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Magalhaes Filho, C., Holzenberger, M. (2010). IGF Receptors in the Adult Brain. In: Clemmons, D., Robinson, I., Christen, Y. (eds) IGFs:Local Repair and Survival Factors Throughout Life Span. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04302-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04302-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04301-7

  • Online ISBN: 978-3-642-04302-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics