Skip to main content

Is Alzheimer’s a Disorder of Ageing and Why Don’t Mice get it? The Centrality of Insulin Signalling to Alzheimer’s Disease Pathology

  • Chapter
  • First Online:
Diabetes, Insulin and Alzheimer's Disease

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

  • 1550 Accesses

Abstract

The amyloid cascade hypothesis has had considerable importance in driving forward the molecular understanding of Alzheimer’s disease (AD) pathology. One component of that cascade might be glycogen synthase kinase-3 (GSK3), a kinase that appears to be activated by Aβ and in turn phosphorylates tau. GSK3 is also inhibited by insulin signalling and insulin resistance, and diabetes is a major risk factor for AD. We hypothesise, as others have done, that insulin signalling is central to the pathological process, with evidence that both genetic and environmental risk factors for AD involve the insulin pathway. We also postulate that transgenic mice provide only a partial model for AD, as insulin signalling acts as a protective factor against Aβ toxicity; also, the well-established relationship between insulin signalling and longevity might explain why the single most important risk factor for AD is age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi A, Kano F, Saido TC, Murata M (2009) Visual screening and analysis for kinase-regulated membrane trafficking pathways that are involved in extensive β-amyloid secretion. Genes Cells 14:355–369

    Article  PubMed  CAS  Google Scholar 

  • Albanese E, Banerjee S, Dhanasiri S, Fernandez J-L, Ferri C, Knapp M, McCrone P, Prince M, Snell T, Stewart R (2007) Dementia UK: Report to the Alzheimer’s Society, Kings College London and London School of Economics and Political Science

    Google Scholar 

  • Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J (1999) Lithium protects cultured neurons against b-amyloid-induced neurodegeneration. FEBS Lett 453:260–264

    Article  PubMed  CAS  Google Scholar 

  • Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, Ancolio K, Checler F Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci USA 99:4043–4048

    Google Scholar 

  • Anekonda TS, Reddy PH (2006) Neuronal protection by sirtuins in Alzheimer’s disease. J Neurochem 96:305–313

    Article  PubMed  CAS  Google Scholar 

  • Aplin AE, Gibb GM, Jacobsen JS, Gallo JM, Anderton BH (1996) In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3β. J Neurochem 67:699–707

    Article  PubMed  CAS  Google Scholar 

  • Aplin AE, Jacobsen JS, Anderton BH, Gallo JM (1997) Effect of increased glycogen synthase kinase-3 activity upon the maturation of the amyloid precursor protein in transfected cells. Neuroreport 8:639–643

    Article  PubMed  CAS  Google Scholar 

  • Avila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett. 580:2922-2927

    Article  PubMed  CAS  Google Scholar 

  • Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    Article  PubMed  CAS  Google Scholar 

  • Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 1: E20

    Article  Google Scholar 

  • Bartke A (2008) Insulin and aging. Cell Cycle 7:3338–3343

    PubMed  CAS  Google Scholar 

  • Bertram L, McQueen M, Mullin K, Blacker D, Tanzi R (2005) The AlzGene database. Alzheimer Research Forum

    Google Scholar 

  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74

    Article  PubMed  Google Scholar 

  • Bornemann KD, Staufenbiel M (2000) Transgenic mouse models of Alzheimer’s disease. Ann NY Acad Sci 908:260–266

    Article  PubMed  CAS  Google Scholar 

  • Boutajangout A, Leroy K, Touchet N, Authelet M, Blanchard V, Tremp G, Pradier L, Brion JP (2002) Increased tau phosphorylation but absence of formation of neurofibrillary tangles in mice double transgenic for human tau and Alzheimer mutant (M146L) presenilin-1. Neurosci Lett 318:29–33

    Article  PubMed  CAS  Google Scholar 

  • Boyt AA, Taddei K, Hallmayer J, Helmerhorst E, Gandy SE, Craft S, Martins RN (2000) The effect of insulin and glucose on the plasma concentration of Alzheimer’s amyloid precursor protein. Neuroscience 95:727–734

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol Berl 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol (Berl ) 87:554–567

    Article  CAS  Google Scholar 

  • Brownlees J, Irving NG, Brion JP, Gibb BJM, Wagner U, Woodgett J, Miller CC (1997) Tau phosphorylation in transgenic mice expressing glycogen synthase kinase-3β transgenes. Neuroreport 8:3251–3255

    Article  PubMed  CAS  Google Scholar 

  • Brunden KR, Trojanowski JQ, Lee VM (2008) Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 14:393–399

    PubMed  Google Scholar 

  • Caccamo A, Oddo S, Tran LX, LaFerla FM (2007) Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 170:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282:36275–36282

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-β levels. Nature Med 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I (2005) Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: New cues into the human disease? Neurobiol Aging 27:1618-1631

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I (2006) Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 27:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163

    Article  PubMed  CAS  Google Scholar 

  • Chee FC, Mudher A, Cuttle MF, Newman TA, MacKay D, Lovestone S, Shepherd D (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20:918–928

    Article  PubMed  CAS  Google Scholar 

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55:3320–3325

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature Rev Neurosci 9:759–767

    Article  CAS  Google Scholar 

  • Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  PubMed  CAS  Google Scholar 

  • Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjögren M, Blennow K (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13:611–615

    Article  PubMed  CAS  Google Scholar 

  • Dayanandan R, Van SM, Mack TG, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446:228–232

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, Reyes AE, Alvarez A, Bronfman M, Inestrosa NC (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiat 8:195–208

    Article  CAS  Google Scholar 

  • De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, Myers A, Sáez K, Henríquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, Morris CM, Hardy J, Moon RT (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 104:9434–9439

    Article  PubMed  CAS  Google Scholar 

  • Dore S, Kar S, Quirion R (1997) Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci USA 94:4772–4777

    Article  PubMed  CAS  Google Scholar 

  • Duff K (1998) Recent work on Alzheimer’s disease transgenics. Curr Opin Biotechnol 9:561–564

    Article  PubMed  CAS  Google Scholar 

  • Dunn N, Holmes C, Mullee M (2005) Does lithium therapy protect against the onset of dementia? Alzheimer Dis Assoc Disord 19:20–22

    Article  PubMed  CAS  Google Scholar 

  • Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez F (2006) Cooexpression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27:1258-1268

    Article  PubMed  CAS  Google Scholar 

  • Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006a) Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Engel T, Hernandez F, Avila J, Lucas JJ (2006b) Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci 26:5083–5090

    Article  PubMed  CAS  Google Scholar 

  • Farias GG, Godoy JA, Hernandez F, Avila J, Fisher A, Inestrosa NC (2004) M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol Dis 17:337–348

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Hu W, Rajagopal G, Levine AJ (2008) The tumor suppressor p53: cancer and aging. Cell Cycle 7:842–847

    Article  PubMed  CAS  Google Scholar 

  • Ferber D (2001) Neurodegenerative disease. Using the fruit fly to model tau malfunction. Science 292:1983–1984

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfó E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2:3–18

    Article  PubMed  CAS  Google Scholar 

  • Feulner TM, Laws SM, Friedrich P, Wagenpfeil S, Wurst SH, Riehle C, Kuhn KA, Krawczak M, Schreiber S, Nikolaus S, Förstl H, Kurz A, Riemenschneider M. (2009) Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiat advance online publication 6 January doi:10.1038/mp.2008.141

    Google Scholar 

  • Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of β-amyloid peptide in C. elegans. Autophagy 3:569–580

    PubMed  CAS  Google Scholar 

  • Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF, Lovestone S (2000) Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3β inhibition and in neurons. J Neural Transm 107:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 43:B102–B109

    Google Scholar 

  • Gao S, Hendrie HC, Hall KS (1998) The relationships between age, sex, and the incidence of dementia and Alzheimer disease – A meta-analysis. Arch Gen Psychiat 55:809–815

    Article  PubMed  CAS  Google Scholar 

  • Ghribi O, Herman MM, Savory J (2003) Lithium inhibits Aβ-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation. J Neurosci Res 71:853–862

    Article  PubMed  CAS  Google Scholar 

  • Giannakou ME, Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32:180–188

    Article  PubMed  CAS  Google Scholar 

  • Gloeckner SF, Meyne F, Wagner F, Heinemann U, Krasnianski A, Meissner B et al (2008) Quantitative analysis of transthyretin, tau and amyloid-β in patients with dementia. J Alzheimers Dis 14:17–25

    PubMed  CAS  Google Scholar 

  • Gotz J, Barmettler R, Ferrari A, Goedert M, Probst A, Nitsch RM (2000) In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann NY Acad Sci 920:126–133

    Article  PubMed  CAS  Google Scholar 

  • Gotz J, Chen F, Barmettler R, Nitsch RM (2001a) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534

    Article  PubMed  CAS  Google Scholar 

  • Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001b) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R, Stone D, Schadt E, Karnoub M, Nowotny P, Tacey K, Catanese J, Sninsky J, Brayne C, Rubinsztein D, Gill M, Lawlor B, Lovestone S, Holmans P, O’Donovan M, Morris JC, Thal L, Goate A, Owen MJ, Williams J (2007) Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 16:865–873

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nature Rev Mol Cell Biol 8:101–112

    Article  CAS  Google Scholar 

  • Hamilton G, Proitsi P, Jehu L, Morgan A, Williams J, O’Donovan MC, Owen MJ, Powell JF, Lovestone S (2007) Candidate gene association study of insulin signaling genes and Alzheimer’s disease: evidence for SOS2, PCK1, and PPARγ as susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 144B: 508–516

    Google Scholar 

  • Hanger DP, Hughes K, Woodgett JR, Brion J-P, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58–62

    Article  PubMed  CAS  Google Scholar 

  • Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282:23645–23654

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2006) Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 3:71–73

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  • Helisalmi S, Vepsäläinen S, Hiltunen M, Koivisto AM, Salminen A, Laakso M, Soininen H (2008) Genetic study between SIRT1, PPARD, PGC-1α genes and Alzheimer’s disease. J Neurol 255:668–673

    Article  PubMed  CAS  Google Scholar 

  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J Neurochem 83:1529–1533

    Article  PubMed  CAS  Google Scholar 

  • Heutink P (2000) Untangling tau-related dementia. Hum Mol Genet 9:979–986

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904

    PubMed  CAS  Google Scholar 

  • Hong M, Lee VMY (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272:19547–19553

    Article  PubMed  CAS  Google Scholar 

  • Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007a) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81–86

    Article  PubMed  Google Scholar 

  • Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R (2007b) p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett 418:34–37

    Article  PubMed  CAS  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Howlett DR, Richardson JC (2009) The pathology of APP transgenic mice: a model of Alzheimer’s disease or simply overexpression of APP? Histol Histopathol 24:83–100

    PubMed  CAS  Google Scholar 

  • Hye A, Kerr F, Archer N, Foy C, Poppe M, Brown R, Hamilton G, Powell J, Anderton B, Lovestone S (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci Lett 373:1–4

    Article  PubMed  CAS  Google Scholar 

  • Inestrosa N, De Ferrari G, Garrido J, Alvarez A, Olivares G, Barría MI, Bronfman M, Chacón MA (2002) Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochem Int 41:341

    Article  PubMed  CAS  Google Scholar 

  • Ingelsson M, Ramasamy K, Russ C, Freeman SH, Orne J, Raju S, Matsui T, Growdon JH, Frosch MP, Ghetti B, Brown RH, Irizarry MC, Hyman BT (2007) Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains. Acta Neuropathol 114:471–479

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T, Imahori K (1993) Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325:167–172

    Article  PubMed  CAS  Google Scholar 

  • Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S, Geschwind DH. (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary tangles in Drosophila. Neuron 34:509–519

    Article  PubMed  CAS  Google Scholar 

  • Jorm AF (2000) Is depression a risk factor for dementia or cognitive decline? A review. Gerontology 46:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kessing LV, Sondergard L, Forman JL, Andersen PK (2008) Lithium treatment and risk of dementia. Arch Gen Psychiat 65:1331–1335

    Article  PubMed  Google Scholar 

  • Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, Kerr F, Al-Qassab H, Stephenson J, Yilmaz Z, Giese KP, Brion JP, Withers DJ, Lovestone S (2009) Deletion of IRS2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem Biophys Res Commun 386:257–262

    Google Scholar 

  • Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232:418–421

    Article  PubMed  CAS  Google Scholar 

  • Kwok JB, Loy CT, Hamilton G, Lau E, Hallupp M, Williams J, Owen MJ, Broe GA, Tang N, Lam L, Powell JF, Lovestone S, Schofield PR. (2008) Glycogen synthase kinase-3β and tau genes interact in Alzheimer’s disease. Ann Neurol 64:446–454

    Article  PubMed  CAS  Google Scholar 

  • Kwon HS, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33:517–525

    Article  PubMed  CAS  Google Scholar 

  • Lanni C, Uberti D, Racchi M, Govoni S, Memo M (2007) Unfolded p53: a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 12:93–99

    PubMed  CAS  Google Scholar 

  • Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D (2008) Conformationally altered p53: a novel Alzheimer’s disease marker? Mol Psychiat 13:641–647

    Article  CAS  Google Scholar 

  • Lanz TA, Salatto CT, Semproni AR, Marconi M, Brown TM, Richter KE, Schmidt K, Nelson FR, Schachter JB (2008) Peripheral elevation of IGF-1 fails to alter Abeta clearance in multiple in vivo models. Biochem Pharmacol 75:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Lesort M, Johnson GVW (2000) Insulin-like growth factor-1 and insulin mediate transient site- selective increases in tau phosphorylation in primary cortical neurons. Neuroscience 99:305–316

    Article  PubMed  CAS  Google Scholar 

  • Lesort M, Jope RS, Johnson GV (1999) Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and Fyn tyrosine kinase. J Neurochem 72:576–584

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet 25:402–405

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • li-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann Med 39:335–345

    Article  CAS  Google Scholar 

  • Liddell MB, Lovestone S, Owen MJ (2001) Genetic risk of Alzheimer’s disease: advising relatives. Br J Psychiat 178:7–11

    Article  CAS  Google Scholar 

  • Liolitsa D, Powell J, Lovestone S (2002) Genetic variability in the insulin signalling pathway may contribute to the risk of late onset Alzheimer’s disease. J Neurol Neurosurg Psychiat 73:261–266

    Article  PubMed  CAS  Google Scholar 

  • Liu GP, Zhang Y, Yao XQ, Zhang CE, Fang J, Wang Q, Wang JZ (2008) Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol Aging 29:1348–1358

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopmental and neurodegenerative processes. Neuroscience 78:309–324

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo J-M, Hanger D, Mulot S, Marquardt B, Stabel S, Woodgett JR, Miller CC (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S, Hartley CL, Pearce J, Anderton BH (1996) Phosphorylation of tau by glycogen synthase kinase-3β in intact mammalian cells: the effects on organisation and stability of microtubules. Neuroscience 73:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Lowin A, Knapp M, McCrone P (2001) Alzheimer’s disease in the UK: comparative evidence on cost of illness and volume of health services research funding. Int J Geriatr Psychiat 16:1143–1148

    Article  CAS  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J 20:27–39

    Article  PubMed  CAS  Google Scholar 

  • Macdonald A, Briggs K, Poppe M, Higgins A, Velayudhan L, Lovestone S (2008) A feasibility and tolerability study of lithium in Alzheimer’s disease. Int J Geriatr Psychiat 23:704–711

    Article  Google Scholar 

  • Mandelkow E-M, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JR, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314:315–321

    Article  PubMed  CAS  Google Scholar 

  • Martin L, Magnaudeix A, Esclaire F, Yardin C, Terro F (2008) Inhibition of glycogen synthase kinase-3grβ downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A. Brain Res 1252:66–75

    Article  PubMed  CAS  Google Scholar 

  • Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68:6031–6034

    Article  PubMed  CAS  Google Scholar 

  • Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Rev Drug Discov 6:464–479

    Article  CAS  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Piper MD, Thomas JH, Patel DS, Selman C, Withers DJ, Thornton JM, Partridge L, Gems D (2007) Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol 8:R132

    Article  CAS  Google Scholar 

  • McPhee CK, Baehrecke EH (2009) Autophagy in Drosophila melanogaster. Biochim Biophys 1793:1452–1460

    Google Scholar 

  • Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G (1998)Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett 425:225–228

    Article  PubMed  CAS  Google Scholar 

  • MRC CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175

    Article  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease – do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    Article  PubMed  CAS  Google Scholar 

  • Mudher A, Chapman S, Richardson J, Asuni A, Gibb G, Pollard C, Killick R, Iqbal T, Raymond L, Varndell I, Sheppard P, Makoff A, Gower E, Soden PE, Lewis P, Murphy M, Golde TE, Rupniak HT, Anderton BH, Lovestone S (2001) Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J Neurosci 21:4987–4995

    PubMed  CAS  Google Scholar 

  • Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S (2004) GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiat 9:522–530

    Article  CAS  Google Scholar 

  • Muyllaert D, Terwel D, Borghgraef P, Devijver H, Dewachter I, Van LF (2006) Transgenic mouse models for Alzheimer’s disease: the role of GSK-3β in combined amyloid and tau-pathology. Rev Neurol (Paris) 162:903–907

    CAS  Google Scholar 

  • Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaleem M, Marlowe L, Lees A, Leung D, McKeith IG, Perry RH, Morris CM, Trojanowski JQ, Clark C, Karlawish J, Arnold S, Forman MS, Van Deerlin V, de Silva R, Hardy J (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25:561–570

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B Litchfield S, Smith A, Barnetson L, Smith AD. (1995) Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dementia 6:21–31

    PubMed  CAS  Google Scholar 

  • Nakashima H, Ishihara T, Suguimoto P, Yokota O, Oshima E, Kugo A, Kugo A, Terada S, Hamamura T, Trojanowski JQ, Lee VM, Kuroda S (2005) Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 110:547–556

    Article  PubMed  CAS  Google Scholar 

  • Niikura T, Hashimoto Y, Okamoto T, Abe Y, Yasukawa T, Kawasumi M, Hiraki T, Kita Y, Terashita K, Kouyama K, Nishimoto I (2001) Insulin-like growth factor I (IGF-I) protects cells from apoptosis by Alzheimer’s V642I mutant amyloid precursor protein through IGF-I receptor in an IGF-binding protein-sensitive manner. J Neurosci 21:1902–1910

    PubMed  CAS  Google Scholar 

  • Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995

    Article  PubMed  CAS  Google Scholar 

  • Nunes PV, Forlenza OV, Gattaz WF (2007) Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiat 190:359–360

    Article  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, Flynn ER (2004) Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 17:500–506

    Article  PubMed  CAS  Google Scholar 

  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  PubMed  CAS  Google Scholar 

  • Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3b (GSK- 3β) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53:703–717

    Article  PubMed  CAS  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423:435–439

    Article  PubMed  CAS  Google Scholar 

  • Piper MD, Selman C, McElwee JJ, Partridge L (2008) Separating cause from effect: how does insulin/IGF signalling control lifespan in worms, flies and mice? J Intern Med 263:179–191

    Article  PubMed  CAS  Google Scholar 

  • Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y, Takashima A (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24:2401–2411

    Article  PubMed  CAS  Google Scholar 

  • Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27:13635–13648

    Article  PubMed  CAS  Google Scholar 

  • Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann NY Acad Sci 1147:335–347

    Article  PubMed  CAS  Google Scholar 

  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen CH, Zhou W, Wang K, Song W (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205:2781–2789

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, Masliah E (2007) Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 27:1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484

    Article  PubMed  CAS  Google Scholar 

  • Ryder J, Su Y, Liu F, Li B, Zhou Y, Ni B (2003) Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun 312:922–929

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092

    PubMed  CAS  Google Scholar 

  • Schweitzer I, Tuckwell V, O’Brien J, Ames D (2002) Is late onset depression a prodrome to dementia? Int J Geriatr Psychiat 17:997–1005

    Article  Google Scholar 

  • Sengupta A, Wu QL, Grundke-Iqbal I, Iqbal K, Singh TJ (1997) Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol Cell Biochem 167:99–105

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Duff K (2008) Linking Aβ and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60:534–542

    Article  PubMed  CAS  Google Scholar 

  • Smith WW, Norton DD, Gorospe M, Jiang H, Nemoto S, Holbrook NJ, Finkel T, Kusiak JW (2005) Phosphorylation of p66Shc and forkhead proteins mediates Aβ toxicity. J Cell Biol 169:331–339

    Article  PubMed  CAS  Google Scholar 

  • Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14:1015–1022

    PubMed  CAS  Google Scholar 

  • Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388

    PubMed  CAS  Google Scholar 

  • Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717

    Article  PubMed  CAS  Google Scholar 

  • Stewart R, Liolitsa D (1999) Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 16:93–112

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, BruneK, PaulS, Yan Z, LiuF, Binhui N (2004) Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 43:6899–6908

    Article  PubMed  CAS  Google Scholar 

  • Tajes M, Gutierrez-Cuesta J, Folch J, Ferrer I, Caballero B, Smith MA, Casadesus G, Camins A, Pallás M (2008) Lithium treatment decreases activities of tau kinases in a murine model of senescence. J Neuropathol Exp Neurol 67:612–623

    Article  PubMed  CAS  Google Scholar 

  • Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I glycogen synthase kinase- 3β by amyloid β peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31:317–323

    Article  PubMed  CAS  Google Scholar 

  • Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, Yoshiike Y, Park JM, Matsuda K, Nakao S, Sun X, Sato S, Yamaguchi H, Takashima A (2001) Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 8:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N (2006) Lithium and dementia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiat 30:1125–1128

    Article  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  • Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F (2008) Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172:786–798

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VMY (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: Focusing on phosphatases. FASEB J 9:1570–1576

    PubMed  CAS  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68

    Article  PubMed  Google Scholar 

  • Williams DW, Tyrer M, Shepherd D (2000) Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428:630–640

    Article  PubMed  CAS  Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal, D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS (2008) Animal models of Alzheimer’s disease: therapeutic implications. J Alzheimers Dis 15:507–521

    PubMed  CAS  Google Scholar 

  • Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, Wang Q, Chen JG, Wang JZ (2007) Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci 27:12211–12220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovestone, S., Killick, R. (2010). Is Alzheimer’s a Disorder of Ageing and Why Don’t Mice get it? The Centrality of Insulin Signalling to Alzheimer’s Disease Pathology. In: Craft, S., Christen, Y. (eds) Diabetes, Insulin and Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04300-0_9

Download citation

Publish with us

Policies and ethics