Skip to main content

Serum IGF-I, Life Style, and Risk of Alzheimer’s disease

  • Chapter
  • First Online:
Book cover Diabetes, Insulin and Alzheimer's Disease

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

  • 1426 Accesses

Abstract

The ancient insulin-like family of peptides gave rise in higher organisms to insulin-growth factors (IGFs) and insulin. Formerly considered functionally divergent, new evidence suggests that IGFs and insulin probably share a close functional relationship. These links are still poorly defined but may eventually turn out to be of great relevance in the development of Alzheimer´s pathology. IGF-I in the circulation acts as a neuroprotective hormone, entering into the brain through a transport system at the blood-brain barriers. The neuroactive role of serum IGF-I is modulated by environmental factors and behavior. Importantly, both environmental factors and life style are increasingly recognized to impact the development of Alzheimer´s disease (AD). Risk factors classically associated with cardiovascular disease, such as unhealthy diets, lack of physical exercise, or stress, are now also related to AD. The molecular underpinnings of these links are starting to be unveiled. There is evidence pointing to serum IGF-I in this regard. Circumstantial observations, such as that serum IGF-I declines with aging, the single most important risk factor for AD, or that serum IGF-I correlates with cognitive status in humans, have hinted at this connection. Further, diet, and physical or mental activity influence serum IGF-I input to the brain. In addition, stress and general health status may influence brain input of serum IGF-I. All these factors have been linked to a risk of AD. Analysis of the molecular and cellular pathways involved in serum IGF-I traffic at the blood-brain interfaces indicates that pathogenic disturbances at these sites may be of great relevance in the development of AD. Indeed, reduced brain IGF-I input elicits all the neuropathological changes associated with AD. As all the above-mentioned life style factors impinge on the transport of IGF-I at the barriers, a molecular understanding of their role as risk factors is now within reach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary dxercise Decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25:4217–4221

    Article  PubMed  CAS  Google Scholar 

  • Adlerz L, Holback S, Multhaup G, Iverfeldt K (2007) IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 282:10203–10209

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Verhaar HJ, de Haan EH, de Vries WR, Samson MM, Drent ML, van der Veen EA, Koppeschaar HP (1999) Insulin-like growth factor-I and cognitive function in healthy older men. J Clin Endocrinol Metab 84:471–475

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    PubMed  CAS  Google Scholar 

  • Baskin DG, Figlewicz DP, Woods SC, Porte D, Jr., Dorsa DM (1987) Insulin in the brain. Annu Rev Physiol 49:335–347

    Article  PubMed  CAS  Google Scholar 

  • Benyoucef S, Surinya KH, Hadaschik D, Siddle K (2007) Characterisation of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 403:603–13

    Article  PubMed  CAS  Google Scholar 

  • Blum-Degen D, Frolich L, Hoyer S, Riederer P (1995) Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J Neural Transm Suppl 46:139–147

    PubMed  CAS  Google Scholar 

  • Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann NY Acad Sci 692:33–43

    Article  PubMed  CAS  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR (2001) Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans. Mech Ageing Dev 122:673–693

    Article  PubMed  CAS  Google Scholar 

  • Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, Torres-Aleman I (2000) Neurodegeneration Is associated to changes in serum insulin-like growth factors. Neurobiol Dis 7:657–665

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20:2926–2933

    PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21:5678–5684

    PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-β levels. Nature Med 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 490:127–133

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I (2006) Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 27:1618–1631

    Article  PubMed  CAS  Google Scholar 

  • Chan SJ, Cao QP, Steiner DF (1990) Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proc Natl Acad Sci USA 87:9319–9323

    Article  PubMed  CAS  Google Scholar 

  • Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EM, Orr HT, Botas J, Zoghbi HY (2003) Interaction of akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113:457–468

    Article  PubMed  CAS  Google Scholar 

  • Clemmons DR (2004) Role of insulin-like growth factor lin maintaining normal glucose homeostasis. Horm Res 62 Suppl 1:77–82

    Article  CAS  Google Scholar 

  • Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW (2007) Enhanced cognitive activity--over and above social or physical activity--is required to protect Alzheimer’s mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiol Learning Memory 88:277–294

    Article  CAS  Google Scholar 

  • Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    Article  PubMed  CAS  Google Scholar 

  • Davila D, Piriz J, Trejo JL, Nunez A, Torres-Aleman I (2007) Insulin and insulin-like growth factor I signalling in neurons. Front Biosci 12:3194–3202

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed  Google Scholar 

  • de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    Article  PubMed  Google Scholar 

  • DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  PubMed  CAS  Google Scholar 

  • Dietrich MO, Muller A, Bolos M, Carro E, Perry ML, Portela LV, Souza DO, Torres-Aleman I (2007) Western style diet impairs entrance of blood-borne insulin-like growth factor-1 into the brain. Neuromol Med 9:324–330

    Article  CAS  Google Scholar 

  • Dimopoulou I, Kouyialis AT, Orfanos S, Armaganidis A, Tzanela M, Thalassinos N, Tsagarakis S (2005) Endocrine alterations in critically ill patients with stroke during the early recovery period. Neurocrit Care 3:224–229

    Article  PubMed  Google Scholar 

  • Dziegielewska KM, Saunders NR (2002) The ins and outs of brain-barrier mechanisms. Trends Neurosci 25:69–71

    Article  PubMed  CAS  Google Scholar 

  • Eliakim A, Moromisato M, Moromisato D, Brasel JA, Roberts C, Cooper DM (1997) Increase in muscle IGF-I protein but not IGF-I mRNA after 5 days of endurance training in young rats. Am J Physiol 273: R1557-R1561

    Google Scholar 

  • Eliakim A, Brasel JA, Mohan S, Wong WL, Cooper DM (1998) Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am J Physiol 275: R308-R314

    Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nature Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  • Everson CA, Crowley WR (2004) Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab 286: E1060-E1070

    Article  Google Scholar 

  • Fernandez AM, de la Vega AG, Torres-Aleman I (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA 95:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AM, Kim JK, Yakar S, Dupont J, Hernandez-Sanchez C, Castle AL, Filmore J, Shulman GI, Le RD (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15:1926–1934

    Article  PubMed  CAS  Google Scholar 

  • Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I (2007) Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res 17:89–95

    Article  PubMed  CAS  Google Scholar 

  • Foster LA, Ames NK, Emery RS (1991) Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav 50:745–749

    Article  PubMed  CAS  Google Scholar 

  • Fotenos AF, Mintun MA, Snyder AZ, Morris JC, Buckner RL (2008) Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 65:113–120

    Article  PubMed  Google Scholar 

  • Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Merino D, Drogou C, Chennaoui M, Tiollier E, Mathieu J, Guezennec CY (2005) Effects of combined stress during intense training on cellular immunity, hormones and respiratory infections. Neuroimmunomodulation 12:164–172

    Article  PubMed  CAS  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4:179–189

    PubMed  Google Scholar 

  • Harrela M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, Toivanen L, Koskenvuo M, Leinonen P, Koistinen R, Seppala M (1996) Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 98:2612–2615

    Article  PubMed  CAS  Google Scholar 

  • Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2:831–837

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, Kubota T, Mori H, Tanaka S, Horie H, Tanabe Y, Goto YI (2007) Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol 66:117–123

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Golde DW, Bailey R, Geffner ME (1998) Insulin-like growth factor-I resistance. Endocr Rev 19:625–646

    Article  PubMed  CAS  Google Scholar 

  • Jernstrom H, Deal C, Wilkin F, Chu W, Tao Y, Majeed N, Hudson T, Narod SA, Pollak M (2001) Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol Biomarkers Prev 10:377–384

    PubMed  CAS  Google Scholar 

  • Kappeler L, De Magalhaes Filho CM, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le BY, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6: e254

    Article  CAS  Google Scholar 

  • Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43:13–20

    PubMed  CAS  Google Scholar 

  • Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  PubMed  CAS  Google Scholar 

  • Kloting N, Koch L, Wunderlich T, Kern M, Ruschke K, Krone W, Bruning JC, Bluher M (2008) Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 57:2074–2082

    Article  PubMed  CAS  Google Scholar 

  • Koopmans GC, Brans M, Gomez-Pinilla F, Duis S, Gispen WH, Torres-Aleman I, Joosten EA, Hamers FP (2006) Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions. Eur J Neurosci 23:1035–1046

    Article  PubMed  Google Scholar 

  • Kumari M, Tabassum F, Clark C, Strachan D, Stansfeld S, Power C (2008) Social differences in insulin-like growth factor-1: findings from a British birth cohort. Ann Epidemiol 18:664–670

    Article  PubMed  Google Scholar 

  • Lewitt MS, Hilding A, Ostenson CG, Efendic S, Brismar K, Hall K (2008) Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 51:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 101:9833–9838

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo-Zúñiga V, Bartoli R, Masnou H, Montoliu S, Morillas RM, Planas R (2007) Serum concentrations of insulin-like growth factor-I (IGF-I) as a marker of liver fibrosis in patients with chronic hepatitis C. Dig Dis Sci 52:3245–3250

    Article  PubMed  CAS  Google Scholar 

  • Luo JM, Murphy LJ (1989) Dexamethasone inhibits growth hormone induction of insulin-like growth factor-I (IGF-I) messenger ribonucleic acid (mRNA) in hypophysectomized rats and reduces IGF-I mRNA abundance in the intact rat. Endocrinology 125:165–171

    Article  PubMed  CAS  Google Scholar 

  • Malagelada C, Jin ZH, Greene LA (2008) RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 28:14363–14371

    Article  PubMed  CAS  Google Scholar 

  • Miell JP, Taylor AM, Jones J, Holly JM, Gaillard RC, Pralong FP, Ross RJ, Blum WF (1993) The effects of dexamethasone treatment on immunoreactive and bioactive insulin-like growth factors (IGFs) and IGF-binding proteins in normal male volunteers. J Endocrinol 136:525–533

    Article  PubMed  CAS  Google Scholar 

  • Milionis HJ, Florentin M, Giannopoulos S (2008) Metabolic syndrome and Alzheimer’s disease: a link to a vascular hypothesis? CNS Spectr 13:606–613

    PubMed  Google Scholar 

  • Moxham CP, Duronio V, Jacobs S (1989) Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem 264:13238–13244

    PubMed  CAS  Google Scholar 

  • Muzumdar RH, Ma X, Fishman S, Yang X, Atzmon G, Vuguin P, Einstein FH, Hwang D, Cohen P, Barzilai N (2006) Central and opposing effects of IGF-I and IGF-binding protein-3 on systemic insulin action. Diabetes 55:2788–2796

    Article  PubMed  CAS  Google Scholar 

  • Okamura-Oho Y, Miyashita T, Ohmi K, Yamada M (1999) Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Human Mol Genet 8:947–957

    Article  CAS  Google Scholar 

  • Pardridge WM (1993) Transport of insulin-related peptides and glucose across the blood- brain barrier. Ann NY Acad Sci 692:126–137

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  PubMed  CAS  Google Scholar 

  • Peretz S, Jensen R, Baserga R, Glazer PM (2001) ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA 98:1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–686

    Article  PubMed  CAS  Google Scholar 

  • Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331

    Article  PubMed  CAS  Google Scholar 

  • Richards M, Deary IJ (2005) A life course approach to cognitive reserve: a model for cognitive aging and development? Ann Neurol 58:617–622

    Article  PubMed  Google Scholar 

  • Rönnemaa E, Zethelius B, Sundelöf J, Sundström J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L (2008) Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 71:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Schwab S, Spranger M, Krempien S, Hacke W, Bettendorf M (1997) Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 28:1744–1748

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Brasel JA, Hintz RL, Mohan S, Cooper DM (1996) Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab 81:3492–3497

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Prasanthi RPJ, Schommer E, Feist G, Ghribi O (2008) Hypercholesterolemia-induced Abeta accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiol Dis 32:426–432

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Johnson J, Romero-Corral A, Somers VK, Lopez-Jimenez F, Mälarstig A, Brismar K, Hamsten A, Fisher RM, Hellénius ML (2008) IGF-I/I GFBP-3 ratio: a mechanistic insight into the metabolic syndrome. Clin Sci 116:507–512

    Article  CAS  Google Scholar 

  • Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, Brandt J (2006) Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 281:25869–25874

    Article  PubMed  CAS  Google Scholar 

  • Strachan MW (2003) Insulin and cognitive function. The Lancet 362:1253

    Article  Google Scholar 

  • Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15:80–101

    PubMed  CAS  Google Scholar 

  • Torres Aleman I (2005) Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv Exp Med Biol 567:243–258

    Article  PubMed  Google Scholar 

  • Torres Aleman I, Pons S, Arevalo MA (1994) The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res 39:117–126

    Article  PubMed  CAS  Google Scholar 

  • Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    PubMed  CAS  Google Scholar 

  • Trejo JL, Carro E, Nunez A, Torres-Aleman I (2002) Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev Neurosci 13:365–374

    PubMed  CAS  Google Scholar 

  • Trejo J, Piriz J, Llorens-Martin MV, Fernandez AM, Bolos M, LeRoith D, Nunez A, Torres-Aleman I (2007) Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol Psychiat 12:1118–1128

    Article  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nature Rev Neurosci 1:191–198

    Article  CAS  Google Scholar 

  • Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM (2007) Increased circulating insulin-like growth factor-1 in late-onset Alzheimer’s disease. J Alzheimers Dis 12:285–290

    PubMed  CAS  Google Scholar 

  • Walter HJ, Berry M, Hill DJ, Logan A (1997) Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain. Endocrinology 138:3024–3034

    Article  PubMed  CAS  Google Scholar 

  • Wilczak N, de Vos RA, De Keyser J (2003) Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet 361:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO (1997) Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 423:39–45

    PubMed  CAS  Google Scholar 

  • Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96:7324–7329

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piriz, J., Nishijima, T., Trejo, J.L., Aleman, I.T. (2010). Serum IGF-I, Life Style, and Risk of Alzheimer’s disease. In: Craft, S., Christen, Y. (eds) Diabetes, Insulin and Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04300-0_12

Download citation

Publish with us

Policies and ethics