Skip to main content
  • 2087 Accesses

Abstract

Following the new challenges of the power industry outlined in Chapter 1, new techniques for power system analysis are needed. These emerging techniques cover various aspects of power system analysis including stability assessment, reliability, planning, cascading failure analysis, and market analysis. In order to better understand the functionalities and needs for these emerging techniques, it is necessary to give an overview of these emerging techniques and compare these emerging ones with traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406: 378–382

    Article  Google Scholar 

  • Ali M, Dong ZY, Li X et al (2005) Applications of grid computing in power systems Procedings of Australasian Universities Power Engineering Conference, Hobart, Australia

    Google Scholar 

  • Ali M, Dong ZY Y, Zhang P (2009) Adoptability of grid computing in power systems analysis, operations and control. IET Generation, Trans Distribu

    Google Scholar 

  • Ali M, Dong ZY, Li X et al (2006) RSA-Grid: A grid computing based framework for power system reliability and security analysis. IEEE-PES General Meeting 2006, Montreal, Canada, 18–22 June 2006

    Google Scholar 

  • Allanach J, Haiying Tu, Singh S et al (2004) Detecting, tracking, and counteracting terrorist networks via hidden Markov models. Proceedings of the 2004 IEEE Aerospace Conference. Bigsky, Montana, 6–13 March 2004

    Google Scholar 

  • Arroyo JM, Galiana FD (2005) On the solution of the bilevel programming formulation of the terrorist threat problem. IEEE Trans Power Syst 20(2): 789–797

    Article  Google Scholar 

  • Asadzadeh P, Buyya R, Kei CL et al (2004) Global grids and software toolkits: a study of four grid middleware technologies. Technical Report. Grid Computing And Distributed Systems Laboratory, University of Melbourne. Australia, 1 July 2004

    Google Scholar 

  • Axceleon and Power Technologies Inc (2003) Partner to Deliver Grid Computing Solution. http://www.axceleon.com/press/release030318.html. Accessed 3 July 2009

    Google Scholar 

  • Billinton R, Kuruganty PRS (1980) A probabilistic index for transient stability assessment. IEEE Trans PAS 99: 195–206

    Google Scholar 

  • Billinton R, Kuruganty PRS (1979) Probabilistic evaluation of transient stability in a multimachine power system. Proc IEE 126: 321–326

    Google Scholar 

  • Billinton R, Li W (1994) Reliability assessment of electric power systems using Monte Carlo methods. Plenum Press, New York

    MATH  Google Scholar 

  • Cannataro M, Talia D (2003) The knowledge grid. Communications of the ACM 46(1): 89–93

    Article  Google Scholar 

  • Carreras B, Lynch V, Dobson I et al (2002) Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 12(4): 985–994

    Article  MATH  MathSciNet  Google Scholar 

  • Carreras BA, Newman DE, Dobson I et al (2004) Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans Circ Syst 51(9): 1733–1740

    Article  Google Scholar 

  • Casals MR, Valverde S, Sole R (2007) Topological vulnerability of the European power grid under errors and attacks. Int J Bifurcation Chaos 17(7): 2465–75

    Article  MATH  Google Scholar 

  • Chen J, Thorp JS, Dobson I (2005) Cascading dynamics and mitigation assessment in power systems disturbances via a hidden failure model. Power Energy Syst 27(4): 318–326

    Article  Google Scholar 

  • Chen QM, Jiang CW, Qiu WZ et al (2006) Probability models for estimating the probabilities of cascading outages in highvoltage transmission network. IEEE Trans Power Syst 21(3): 1423–1431

    Article  Google Scholar 

  • Chen Y, Shen C, Zhang W et al (2004) II-GRID: grid computing infrastructure for power systems. Proceedings of the 39th International Universities Power Engineering Conference (UPEC 2004): 1204–1208

    Google Scholar 

  • CIGRE (1992) GTF 38-03-10, Power system reliability analysis, Vol 2 composite power system reliability evaluation, Paris

    Google Scholar 

  • Chen G, Dong ZY, Hill DJ et al (2009a) Attack structural vulnerability of complex power networks. IEEE Trans Power Syst (submitted to)

    Google Scholar 

  • Chen G, Dong ZY, Hill DJ et al (2009b) An improved model for structural vulnerability analysis of power networks. Physica A 388: 4259–4266

    Article  Google Scholar 

  • Chen G, Dong ZY, Hill DJ et al (2009) Exploring reliable strategies for defending power systems under terrorism threat. IEEE Trans Power Syst (submitted to)

    Google Scholar 

  • Chen YM, Wu D, Wu CK (2009) A game theory approach for the reallocation of security forces against terrorist diversionary attacks. IEEE International Conference on Intelligence and Security Informatics, 8–11 June 2009, pp 89–94

    Article  Google Scholar 

  • Choi J, Tran T, El-Keib AA et al (2005) A mehtod for transmission system expansion planning considering probabilistic reliability criteria. IEEE Trans Power Syst 20(3): 606–1615

    Article  Google Scholar 

  • Cornell E, Guikema S (1991) Probabilistic modeling of terrorist threat: A systems analysis approach to setting priorities among countermeasures, Military Oper Res 7(3)

    Google Scholar 

  • Cohen R, Erez K, ben-Avraham D et al (2000) Physical Review Letters 85: 4626

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Machine Learning 20: 273–297

    MATH  Google Scholar 

  • Crucitti P, Latorab V, Marchiori M (2004) Error and attack tolerance of complex networks. Physica A 340: 388–394

    Article  MathSciNet  Google Scholar 

  • Crucitti P, Latora V, Marchiori M (2003) Efficiency of scale-free networks: error and attack tolerance. Physica A 320: 622–642

    Article  MATH  Google Scholar 

  • Crucitti P, Latora V (2004) A topological analysis of the italian electric power grid. Physica A 338: 92–97

    Article  MathSciNet  Google Scholar 

  • Chen J, Thorp JS, Dobson I (2005) Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model, Int J Electr Power Energy Syst 27(4): 318–326

    Article  Google Scholar 

  • Dobson I, Carreras BA, Lynch VE et al (2007) Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Chaos 17(2): 026103

    Article  Google Scholar 

  • Dobson I, Carreras BA, Newman DE (2005) A loading-dependent model of probabilistic cascading failure. Probab Eng Inf Sci 19(1):15–32

    Article  MATH  MathSciNet  Google Scholar 

  • Dobson I, Carreras BA, Newman DE (2003) A probabilistic loadingdependent model of cascading failure and possible implications for blackouts. Proceedings the 36th International Conferece on System Sciences, Hawaii, 6–9 January 2003

    Google Scholar 

  • Dobson I, Carreras BA, Newman DE (2004) A branching process approximation to cascading load-dependent system failure. Proceedings of the 37th Ann Hawaii Int Conf Syst Sci, vol 37, pp 915–924

    Google Scholar 

  • Dong ZY, Hill DJ, Guo Y (2005) A power system control scheme based on security visualisation in parameter space. Int J Electr Power Energy Syst 27(7): 488–495

    Article  Google Scholar 

  • Duda R, Hart P (1973) Pattern Classification and Scene Analysis. Wiley, New York

    MATH  Google Scholar 

  • EPRI (2002) Probabilistic Reliability Assessment Software users’ guide by EDF R&D, 1 December 2002

    Google Scholar 

  • EPRI (2004) Probabilistic Transmission Planning: Summary of Tools, Status, and Future Plans, EPRI, Palo Alto, California: 2004. 1008612

    Google Scholar 

  • EPRI (2007) PMU Implementation and Application. EPRI, Palo Alto

    Google Scholar 

  • Sun K, Lee ST (2008) Power system security pattern recognition based on phase space visualiza-tion. IEEE Int Conf on Electric Utility Deregulation and Restructuring and Power Technolo-gies (DRPT 2008), Nanjing, 6–9 September 2008

    Google Scholar 

  • EUROGRID Project: Application Testbed for European GRID computing. http://www.eurogrid.org/. Accessed 18 July 2009

    Google Scholar 

  • Figueiredo V, Rodrigues F, Vale Z et al (2005) An electric energy consumer characterization Framework based on data mining techniques. IEEE Trans Power Syst 20(2): 596–602

    Article  Google Scholar 

  • Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl 11(2): 115–128

    Article  Google Scholar 

  • Foster I, Kesselman C, Tuecke S (2001) The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Int J High Perform Comput Appl 15(3): 200–222

    Article  Google Scholar 

  • Grid PP, UK Computing for Particle Physics. http://www.gridpp.ac.uk. Accessed 8 July 2009

    Google Scholar 

  • Han JW (2006) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Hill DJ, Chen GR (2006) Power systems as dynamic networks. Proceedings of IEEE International Symposium on Circuits and Systems, Island of kos, 21–24 May 2006

    Google Scholar 

  • Holmgren AJ, Jenelius E, Westin J (2007) Evaluating strategies for defending electric power networks against antagonistic attacks, IEEE Trans Power Syst 22(1): 76–84

    Article  Google Scholar 

  • Hohzaki R, Nagashima S (2009) A stackelberg equilibrium for a missile procurement problem. Eur J Operational Res, p193

    Google Scholar 

  • Hsu YY, Chang CL (1988) Probabilistic transient stability studies using the conditional probability approach. IEEE Trans Power Syst 3(4): 1565–1572

    Article  Google Scholar 

  • Huang Z, Nieplocha J (2008) Transforming power grid operations via highperformance computing. Proceedings of the IEEE Power and Energy Society General Meeting, Pittsburgh, 20–24 July 2008

    Google Scholar 

  • IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures (2009) Vulnerability assessment for predicting cascading failures in electric power transmission systems. Proc of IEEE Power and Energy Society Power System Conference and Exposition, Seattle, 15–18 March 2009

    Google Scholar 

  • IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures (2008) Initial review of methods for cascading failure analysis in electric power transmission systems. Proc IEEE Power and Energy Society General Meeting, Pittsburgh, 20–24 July 2008

    Google Scholar 

  • Irving M, Taylor G, Hobson P (2004) Plug in to grid computing, moving beyond the web, a look at the potential benefits of grid computing for future power networks. IEEE Power Energy Mag, pp 40–44

    Google Scholar 

  • Jie Chen, James S. Thorp and Ian Dobson. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. Electr Power Energy Syst 27 (2005): 318–326

    Article  Google Scholar 

  • Kreps DM (1990) Game, Theory and Economic Modeling. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kunder P (1994) Power System Stability and Control. McGraw-Hill, New York

    Google Scholar 

  • Kinney R, Crucitti P, Albert R (2005) Modeling cascading failures in the north American power grid. Eur Phys J B 46

    Google Scholar 

  • Kirschen DS, Jawayeera D, Nedic DP et al (2004) A probabilistic indicator of system stress. IEEE Trans Power Syst 19: 1650–1657

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198–701

    Article  Google Scholar 

  • Lee ST (2003) Factors related to the series of outages on august 14, 2003. EPRI Product ID 1009317. www.epri.com. Accessed 18 July 2009

    Google Scholar 

  • Leite da Silva AM, Ribeiro SMP, Arienti VL et al (1990) Probabilistic load flow techniques applied to power system expansion planning. IEEE Trans Power Syst 5(4): 1047–1053

    Article  Google Scholar 

  • Lewis DD (1998) An naïve (bayes) at forty: the independence assumption in information retrieval. Proc ECML-98, 10th European Conference on Machine Learning. Chemnitz, DE, 1998, Springer, Heidelberg, pp 4–15

    Google Scholar 

  • Lewis DD (1998) An naïve (bayes) at forty: the independence assumption in information retrieval. Proceedings of the 10th European Conference on Machine Learning, Chem-nitz, 21–24 April 1998, Springer, Heidelberg, p 415

    Google Scholar 

  • Littlestone N (1998) Learning quickly when irrelevant attributes abound: a new Linear-threshold algorithm. Machine Learning 2(4): 285–318

    Google Scholar 

  • Liu CC et al (2007) Learning to Recognize the Vulnerable Patterns of Cascaded Events. EPRI Technical Report

    Google Scholar 

  • Madan S, Son W-K, Bollinger KE (1997) Applications of data mining for power systems. Proceedings of Canadian Conference on Electrical and Computer Engineering, 25–28 May 1997, pp 403–406

    Google Scholar 

  • Makarov YV, Hardiman RC (2003) Risk, reliability, cascading, and restructuring. IEEE PES General Meeting, vol 3, pp 1417–1429

    Google Scholar 

  • Michigan Public Service Commission (2003) Report on august 14th Blackout

    Google Scholar 

  • Mili L, Qui Q, Phadke AG (2004) Risk assessment of catastrophic failures in electric power systems, Int J crit infrastruct 1(1): 38–63

    Article  Google Scholar 

  • Motter AE, Nishikawa T, Lai YC (2002) Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon. Phys Rev E 66, 065103

    Article  Google Scholar 

  • Motto A, Arroyo JM, Galiana FD (2005) A mixed-integer LP procedure for the analysis of electric grid security under disruptive threat. IEEE Trans Power Syst 20(3): 1357–1365

    Article  Google Scholar 

  • National Research Council (2002) Committee on Science and Technology for Countering Terrorism, National Academy Press, Washington

    Google Scholar 

  • NERC, US-Canada Power System Outage Task Force (2004) Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations. http://www.nerc.com/filez/blackout.html. Accessed 3 July 2009

    Google Scholar 

  • Nedic DP, Dobson I, Kirschen DS et al (2006) Criticality in a cascading failure blackout model. Int J Electr Power Energy Syst 28: 627–633

    Article  Google Scholar 

  • Nizar AH, Dong ZY, Wang Y (2008) Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans Power Syst 23(3): 946–955

    Article  Google Scholar 

  • Olaru C, Wehenkel L (1999) Data Mining. CAP Tutorial, pp 19–25

    Google Scholar 

  • Owen G (1995) Game Theory, 3rd edn. Academic, New York

    Google Scholar 

  • Pecas Lopes JA, Vasconcelos MH (2000) On-line dynamic security assessment based on kernel regression trees. Proceeding of IEEE PES Winter Meeting, 2: 1075–1080

    Google Scholar 

  • Powell R (2007) Defending against terrorist attacks with limited resources. American Political science review 101(3)

    Google Scholar 

  • Quinlan TR (1996) Improved use of continuous attributes in C4.5. J Art Int Res 4, 77–90

    MATH  Google Scholar 

  • Robert CP, Casella G (1004) Monte Carlo Statistical Methods, 2nd Edn. Springer, New York

    Google Scholar 

  • Rumelhart DE, GE Hinton, RJ Williams (1986) Learning internal representations by error propagation. in: Rumelhart DE, McClelland JL eds, Parallel Distributed Processing. MIT press, Cambridge

    Google Scholar 

  • Rustem B, Howe M (2002) Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Sebastiani F (2002) Machine Learning in Automated Text Categorization, ACM Computing Surveys (CSUR) 34(1): 1–47

    Article  Google Scholar 

  • Salmeron J, Wood K, Baldick R (2004) Analysis of electric grid security under Terrorist threat. IEEE Trans Power syst 19(2): 905–912

    Article  Google Scholar 

  • Stubna MD, Fowler J (2003) An application of the highly optimized tolerance model To electrical blackouts. Bifurcation Chaos Appl, Sci Eng 13(1): 237–242

    Article  MATH  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410 (6825): 268–276

    Article  Google Scholar 

  • Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures, IEEE PES Computer and Analytical Methods Subcommittee (2009), Vulnerability Assessment for Cascading Failures in Electric Power Systems. Proc IEEE Power and Energy Society Power Systems Conference and Exposition, 15–18 March 2009

    Google Scholar 

  • Taylor GA, Irving MR, Hobson PR et al (2006) Distributed monitoring and control of future power systems via grid computing. IEEE PES General meeting 2006, Montreal, 18–22 June 2006

    Google Scholar 

  • Taylor CM, Erickson D, Martin K et al (2005) WACS—wide area stability and voltage control system: R&D and online demonstration. Proceedings of the IEEE 93(5): 892–906

    Google Scholar 

  • Ten C, Liu CC, Govindarasu M (2007) Vulnerability assessment of cybersecurity for SCADA systems using attack trees. Proceedings of PES General Meeting, Tampa, 24-28 June 2007

    Google Scholar 

  • Tso SK, Lin JK, Ho HK et al (2004) Data mining for detection of sensitive buses and influential buses in a power system subjected to disturbances. IEEE Trans Power Syst 19(1): 563–568

    Article  Google Scholar 

  • Vapnik V (1995) The Nature of Statistical Learning Theory. Springer, New York

    MATH  Google Scholar 

  • U.S.-Canada Power System Outage Task Force (2004) Final report on the August 14, 2003 blackout in the united states and canada: causes and recommendations. http://www.nerc.com/filez/blackout.html. Accessed 9 May 2009

    Google Scholar 

  • Von Neumann I, Morgenstern O (1944) Theory of Games and Economic Behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Wang KW, Chung CY, Tse CT et al (2000) Improved probabilistic method for power system dynamic stability studies. IEE Proc Gen, Trans Distr 147(1): 27–43

    Google Scholar 

  • Wang HM (2003) Contingency planning: emergency preparedness for terrorist attacks. Proceedings of IEEE 37th Annual International Carnahan Conference on Security Technology, Taipei, 14–16 October 2003, pp 535–543

    Google Scholar 

  • Wang H, Liu Y (2005) Power system restoration collaborative grid based on grid computing environment. Proceedings of IEEE Power Engineering Society General Meeting 2005, San Francisco, 12–16 June 2005

    Google Scholar 

  • Xu J, Wang XF (2005) Cascading failures in scale-free coupled map lattices. Physica A: Statistica Mech Appl 349(3–4): 685–692

    Article  Google Scholar 

  • Xu Z, Dong ZY (2005) Probabilistic small signal analysis using monte carlo simulation. Proceedings of IEEE PES General Meeting, San Francisco, 12–16 June 2005

    Google Scholar 

  • Yi Jun, Zhou Xiaoxin, Xiao Yunan (2006) Model of Cascading Failure in Power Systems. Proceedings of International Conference on Power System Technology, Chongqing, 22–26 October 2006

    Google Scholar 

  • Zhao JH, Dong ZY, Xu Z et al (2008) A statistical approach for interval forecasting of the electricity price. IEEE Trans Power Syst 23(2): 267–276

    Article  Google Scholar 

  • Zhao JH, Dong ZY, Li X (2007) Electricity market price spike forecasting and decision making, IET Gen Trans Dist 1(4): 647–654

    Article  Google Scholar 

  • Zhao JH, Dong ZY, Li X et al (2007) A framework for electricity price spike analysis with advanced data mining methods. IEEE Trans Power Syst 22(1): 376–385

    Article  Google Scholar 

  • Zhao JH, Dong ZY, Zhang P (2007) Mining complex power networks for blackout prevention. Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 12–15 August 2007

    Google Scholar 

  • Zhang P, Lee ST (2004) Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion. IEEE Trans Power Syst 19(1): 676–682

    Article  Google Scholar 

  • Zhang P, Lee ST, Sobajic D (2004) Moving toward probabilitic reliability assessment methods. 2004 International Conference on Probabilistic Methods Applied to Power Systems, Ames, 12–14 September 2004, pp 906–913

    Google Scholar 

  • Zima M, Andersson G (2004) Wide area monitoring and control as a tool for mitigation of cascading failures. The 8th International Conference on Probabilistic Methods Applied to Power Systems Iowa State University, Ames, 12–16 September 2004

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yin, X., Dong, Z., Zhang, P. (2010). Fundamentals of Emerging Techniques. In: Emerging Techniques in Power System Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04282-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04282-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04281-2

  • Online ISBN: 978-3-642-04282-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics