Skip to main content

Feature Extraction Using Linear and Non-linear Subspace Techniques

  • Conference paper
  • 3764 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Abstract

This paper provides a new insight into unsupervised feature extraction techniques based on subspace models. In this work the subspace models are described exploiting the dual form of the basis vectors. In what concerns the kernel based model, a computationally less demanding model based on incomplete Cholesky decomposition is also introduced. An online benchmark data set allows the evaluation of the feature extraction methods comparing the performance of two classifiers having as input the raw data and the new representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

    Article  Google Scholar 

  2. Moghaddam, B.: Principal manifolds and probabilistic subspace for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(6), 780–788 (2002)

    Article  Google Scholar 

  3. Schölkopf, B., Mika, S., Barges, C.J., Knirsch, P., Müller, K.-R., Ratsch, G., Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5), 1000–1016 (1999)

    Article  Google Scholar 

  4. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based algorithms. IEEE Transactions on Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

  5. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for adaboost. Machine Learning 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

  6. Teixeira, A.R., Tomé, A.M., Lang, E.W.: Exploiting low-rank approximations of kernel matrices in denoising applications. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2007), Thessaloniki, Greece (2007)

    Google Scholar 

  7. Bach, F.R.: Kernel independent component analysis (2003), http://www.di.ens.fr/~fbach/kernel-ica/index.htm

  8. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research 2, 243–264 (2001)

    MATH  Google Scholar 

  9. Teixeira, A.R., Tomé, A.M., Lang, E.W.: Feature extraction using low-rank approximations of the kernel matrix. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 404–412. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Franc, V., Hlaváč, V.: Greedy algorithm for a training set reduction in the kernel methods. In: 10th International Conference on Computer Analysis of Images and Patterns, pp. 426–433. Springer, Holland (2003)

    Chapter  Google Scholar 

  11. Cawley, G.C., Talbot, N.L.C.: Efficient formation of a basis in a kernel induced feature space. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, pp. 1–6. d-side, Belgium (2002)

    Google Scholar 

  12. Baudat, G., Anouar, F.: Feature vector selection and projection using kernels. Neurocomputing 55, 21–38 (2003)

    Article  Google Scholar 

  13. Xu, Y., Zhang, D., Song, F., Yang, J.-Y., Jing, Z., Li, M.: A method for speeding up feature extraction based on kpca. Neurocomputing 70(4-6), 1056–1061 (2007)

    Article  Google Scholar 

  14. Cawley, G.C., Talbot, N.L.: Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers. Pattern Recognition 36, 2585–2592 (2003)

    Article  MATH  Google Scholar 

  15. Duda, R., Hart, P., Stork, D.G.: Pattern Classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  16. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel pca and de-noising in feature spaces. In: Advances in Neural Information Processing 11, pp. 536–542. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teixeira, A.R., Tomé, A.M., Lang, E.W. (2009). Feature Extraction Using Linear and Non-linear Subspace Techniques. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics