Advertisement

FPGA Implementation of Support Vector Machines for 3D Object Identification

  • Marta Ruiz-Llata
  • Mar Yébenes-Calvino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

In this paper we present a hardware architecture for a Support Vector Machine intended for vision applications to be implemented in a FPGA device. The architecture computes the contribution of each support vector in parallel without performing multiplications by using a CORDIC algorithm and a hardware-friendly kernel function. Additionally input images are not preprocessed for feature extraction as each image is treated as a point in a high dimensional space.

Keywords

Support Vector Machines embedded systems image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L., Legat, J.: A survey on industrial vision systems, applications and tools. Image and Vision Computing 21, 171–188 (2003)CrossRefGoogle Scholar
  2. 2.
    Pontil, M., Verri, A.: Support Vector Machines for 3D Object Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(6), 637–646 (1998)CrossRefGoogle Scholar
  3. 3.
    Bouyssounouse, B., Sifakis, J. (eds.): Embedded Systems Design. LNCS, vol. 3436. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Yang, F., Paindavoine, M.: Implementation of an RBF Neural Network on Embedded Systems: Real-Time Face Tracking and Identity Verification. IEEE Transactions on Neural Networks 14(5), 1162–1175 (2003)CrossRefGoogle Scholar
  5. 5.
    Lee, P., Costa, E., McBader, S., Clementel, L., Sartori, A.: LogTOTEM: A Logarithmic Neural Processor and its Implementation on an FPGA Fabric. In: IJCNN 2007, Orlando, FL (2007)Google Scholar
  6. 6.
  7. 7.
    Anguita, D., Boni, A., Ridella, S.: A Digital Architecture for Support Vector Machines: Theory, Algorithm and FPGA Implementation. IEEE Transactions on Neural Networks 14(5), 993–1009 (2003)CrossRefGoogle Scholar
  8. 8.
    Boni, A., Pianegiani, F., Petri, D.: Low-Power and Low-Cost Implementations of SVM for Smart Sensors. IEEE Transactions on Instrumentation and Measurements 56(1), 39–44 (2007)CrossRefGoogle Scholar
  9. 9.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D.: Feed-Forward Support Vector Machine Without Multipliers. IEEE Transactions on Neural Networks 17(5), 1328–1331 (2006)CrossRefGoogle Scholar
  11. 11.
    Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc. ACM/SIGDA 6th Int. Symp.Field Programmable Gate Array, Monterey, CA, pp. 191–200 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marta Ruiz-Llata
    • 1
  • Mar Yébenes-Calvino
    • 1
  1. 1.Departamento de Tecnología ElectrónicaUniversidad Carlos III de MadridMadrid

Personalised recommendations