Advertisement

Spiking Neural Network Self-configuration for Temporal Pattern Recognition Analysis

  • Josep L. Rosselló
  • Ivan de Paúl
  • Vincent Canals
  • Antoni Morro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

In this work we provide design guidelines for the hardware implementation of Spiking Neural Networks. The proposed methodology is applied to temporal pattern recognition analysis. For this purpose the networks are trained using a simplified Genetic Algorithm. The proposed solution is applied to estimate the processing efficiency of Spiking Neural Networks.

Keywords

Neural Networks Spiking Neural Networks Hardware implementation of Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malaka, R., Buck, S.: Solving nonlinear optimization problems using networks of spiking neurons. In: Int. Joint Conf. on Neural Networks, Como, pp. 486–491 (2000)Google Scholar
  2. 2.
    Sala, D.M., Cios, K.J.: Solving graph algorithms with networks of spiking neurons. IEEE Trans. on Neural Net. 10, 953–957 (1999)CrossRefGoogle Scholar
  3. 3.
    Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rosselló, J.L., Canals, V., de Paúl, I., Bota, S., Morro, A.: A Simple CMOS Chaotic Integrated Circuit. IEICE Electronics Express 5, 1042–1048 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Josep L. Rosselló
    • 1
  • Ivan de Paúl
    • 1
  • Vincent Canals
    • 1
  • Antoni Morro
    • 1
  1. 1.Electronic Systems Group, Physics DepartmentUniversitat de les Illes Balears (UIB)Palma de MallorcaSpain

Personalised recommendations