Current-Mode Computation with Noise in a Scalable and Programmable Probabilistic Neural VLSI System

  • Chih-Cheng Lu
  • H. Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


This paper presents the VLSI implementation of a scalable and programmable Continuous Restricted Boltzmann Machine (CRBM), a probabilistic model proved useful for recognising biomedical data. Each single-chip system contains 10 stochastic neurons and 25 adaptable connections. The scalability allows the network size to be expanded by interconnecting multiple chips, and the programmability allows all parameters to be set and refreshed to optimum values. In addition, current-mode computation is employed to increase dynamic ranges of signals, and a noise generator is included to induce continous-valued stochasticity on chip. The circuit design and corresponding measurement results are described and discussed.


Probabilistic VLSI noise scalable and programmable systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tong, B.T., Johannessen, E.A., Lei, W., Astaras, A., Ahmadian, M., Murray, A.F., Cooper, J.M., Beaumont, S.P., Flynn, B.W., Cumming, D.R.S.: Toward a miniature wireless integrated multisensor microsystem for industrial and biomedical applications. IEEE Sensors J. 2(6), 628–635 (2002)CrossRefGoogle Scholar
  2. 2.
    Johannessen, E.A., Wang, L., Wyse, C., Cumming, D.R.S., Cooper, J.M.A.: Biocompatibility of a Lab-on-a-Pill Sensor in Artificial Gastrointestinal Environments. IEEE Transactions on Biomedical Engineering 53(11), 2333–2340 (2006)CrossRefGoogle Scholar
  3. 3.
    Genov, R., Cauwenberghs, G.: Kerneltron: support vector machine in silicon. IEEE Trans. on Neural Networks 14(8), 1426–1433 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hsu, D., Bridges, S., Figueroa, M., Diorio, C.: Adaptive Quantization and Density Estimation in Silicon. In: Advances in Neural Information Processing Systems, pp. 1083–1090. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Chen, H., Murray, A.F.: Continuous restricted Boltzmann machine with an implementable training algorithm. IEE Proceedings-Vision Image and Signal Processing 150(3), 153–158 (2003)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Fleury, P.C.D., Murray, A.F.: Continuous-valued probabilistic behavior in a VLSI generative model. IEEE Trans. on Neural Networks 17(3), 755–770 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Fleury, P., Murray, A.F.: Minimizing Contrastive Divergence in Noisy, Mixed-mode VLSI Neurons. In: Advances in Neural Information Processing Systems (NIPS 2003). MIT Press, Camgridge (2004)Google Scholar
  8. 8.
    Lu, C.C., Hong, C.Y., Chen, H.: A Scalable and Programmable Architecture for the Continuous Restricted Boltzmann Machine in VLSI. In: IEEE International Symposium on Circuits and Systems (2007)Google Scholar
  9. 9.
    Cauwenberghs, G.: An Analog VLSI Recurrent Neural Network Learning a Continuous-Time Trajectory. IEEE Transactions on Neural Networks 7(2), 346–361 (2003)CrossRefGoogle Scholar
  10. 10.
    Liu, S.-C., Kramer, J., Indiveri, G., Delbriick, T., Douglas, R.: Analog VLSI: Circuits and Principles. MIT Press, MA (2002)Google Scholar
  11. 11.
    Al-Sarawi, S.F.: A novel linear resistor utilizing MOS transistors with identical sizes and one controlling voltage. Microelectronics Journal 33(12), 1059–1069 (2002)CrossRefGoogle Scholar
  12. 12.
    Cauwenberghs, G.: Delta-sigma cellular automata for analog VLSI random vector generation. IEEE Transaction on Circuit and System II: Analog and Digital Signal Processing 46(3), 240–250 (1999)CrossRefGoogle Scholar
  13. 13.
    Diotalevi, F., Valle, M., Bo, G.M., Biglieri, E., Caviglia, D.D.: Analog CMOS current mode neural primitives. Circuit and System II: Analog and Digital Signal Processing. In: IEEE International Symposium on Circuits and Systems (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chih-Cheng Lu
    • 1
  • H. Chen
    • 1
  1. 1.The Dept. of Electrical EngineeringThe National Tsing-Hua UniversityHsin-ChuTaiwan

Personalised recommendations