Area Chip Consumption by a Novel Digital CNN Architecture for Pattern Recognition

  • Emil Raschman
  • Daniela Ďuračková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


The implementation for the digital neural networks on a chip requires a lot of chip area consumption. Our contribution paper deals therefore with the design of a novel type of digital CNN architecture focused on pattern recognition application. The novel designed network we compare with another two CNN implementation of digital network on a chip used for pattern recognition by the selected parameters as the speed and chip area consumption. From the comparison we can recognize that our proposed digital CNN network is the best from the other ones.


CNN pattern recognition digital implementation of CNN networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chua, L.O., Yang, L.: Cellular Neural Network: Theory. IEEE Trans. Circuits Systems 35, 1257–1272 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chua, L.O., Yang, L.: Cellular Neural Network: Aplications. IEEE Trans. Circuits Systems 35, 1273–1290 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hänggi, M., Moschytz, G.S.: Cellular Neural Network: Analysis, Design and Optimalization. Kluwer Academic Publisher, Boston (2000)CrossRefGoogle Scholar
  4. 4.
    Sordo, M.: Introduction to Neural Networks in Healthcare. Open Clinical knowledge management for medical care (October 2002)Google Scholar
  5. 5.
    Larsen, J.: Introduction to Artifical Neural Network, Section for Digital Signal Processing Department of Mathematical Modeling Technical University of Denmark, 1st edn (November 1999)Google Scholar
  6. 6.
    Seung, S.: Introduction to Neural Networks: Lecture 1, The Massachusetts Institute of Technology. The Seung Lab. (September 2002)Google Scholar
  7. 7.
    Kvasnička, V., Beňušková, Ľ., Pospíchal, J., Farkaš, I., Tiňo, P., Kráľ, A.: Úvod do teórie neurónových sietí. In: IRIS (1997) ISBN 80-88778-30-1 Google Scholar
  8. 8.
    Jeon, J.: Fuzzy and Neural Network Models for Analyses of Piles, A dissertation submitted to the Graduate Faculty of North Carolina State University, Raleigh, North Carolina (August 2007)Google Scholar
  9. 9.
    Restrepo, H.F., Hoffman, R., Perez-Uribe, A., Teuscher, C., Sanchez, E.: A Networked FPGA-Based Hardware Implementation of a Neural Network Application. In: Pocek, K.L., Arnold, J.M. (eds.) Proceedings of the IEEE Symposium on Field Programmable Custom Computing Machines, FCCM 2000, Napa, California, USA, April 17-19, pp. 337–338. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  10. 10.
    Muthuramalingam, A., Himavathi, S., Srinivasan, E.: Neural Network Implementation Using FPGA: Issues and Application. International Journal of Information Technology 4(2) (28-08-2008)Google Scholar
  11. 11.
    Boubaker, M., Khalifa, K.B., Girau, B., Dogui, M., Bedoui, M.H.: On-Line Arithmetic Based Reprogrammable Hardware Implementation of LVQ Neural Network for Alertness Classification. IJCSNS International Journal of Computer Science and Network Security 8(3) (March 2008)Google Scholar
  12. 12.
    Larkin, D., Kinane, A., Muresan, V., O’Connor, N.: An Efficient Hardware Architecture for a Neural Network Activation Function Generator. LNCS. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Raschman, E., Ďuračková, D.: The Novel Digital Design of a Cell for Cellular Neural Network. In: Proceedings of the Electronic Devices and Systems, Brno, September 2008, pp. 322–325 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emil Raschman
    • 1
  • Daniela Ďuračková
    • 1
  1. 1.Faculty of Electrical Engineering and Information TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations