Advertisement

A Model for Neuronal Signal Representation by Stimulus-Dependent Receptive Fields

  • José R. A. Torreão
  • João L. Fernandes
  • Silvia M. C. Victer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

Image coding by the mammalian visual cortex has been modeled through linear combinations of receptive-field-like functions. The spatial receptive field of a visual neuron is typically assumed to be signal-independent, a view that has been challenged by recent neurophysiological findings. Motivated by these, we here propose a model for conjoint space-frequency image coding based on stimulus-dependent receptive-field-like functions. For any given frequency, the parameters of the coding functions are obtained from the Fourier transform of the stimulus. The representation is initially presented in terms of Gabor functions, but can be extended to more general forms, and we find that the resulting coding functions show properties that are consistent with those of the receptive fields of simple cortical cells of the macaque.

Keywords

Visual Cortex Inverse Fourier Transform Code Function Gabor Function Visual Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)CrossRefGoogle Scholar
  2. 2.
    Marcelja, S.: Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. A 70, 1297–1300 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  4. 4.
    Allman, J., Miezin, F., McGuinness, E.: Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparison in visual neurons. Annu. Rev. Neuroscience 8, 407–430 (1985)CrossRefGoogle Scholar
  5. 5.
    David, S.V., Vinje, W.E., Gallant, J.L.: Natural stimulus statistics alter the receptive field structure of V1 neurons. The Journal of Neuroscience 24(31), 6991–7006 (2004)CrossRefGoogle Scholar
  6. 6.
    Bair, W.: Visual receptive field organization. Current Opinion in Neurobiology 15(4), 459–464 (2005)CrossRefGoogle Scholar
  7. 7.
    Daugman, J.: Complete discrete 2-D Gabor transform by neural networks for image analysis and compression. IEEE Trans. on Acoustics, Speech, Signal Processing 36(7), 1169–1179 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    DeValois, R.L., Albrecht, D.G., Thorell, L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22, 545–559 (1987)CrossRefGoogle Scholar
  9. 9.
    Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fileds in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2002)Google Scholar
  10. 10.
    van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B 265, 359–366 (1998)CrossRefGoogle Scholar
  11. 11.
    Stork, D.G., Wilson, H.R.: Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? J. Opt. Soc. Am. A 7, 1362–1373 (1990)CrossRefGoogle Scholar
  12. 12.
    Hecht, E.: Optics. Addison-Wesley, Reading (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • José R. A. Torreão
    • 1
  • João L. Fernandes
    • 1
  • Silvia M. C. Victer
    • 1
  1. 1.Instituto de ComputaçãoUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations