Review of Neuron Types in the Retina: Information Models for Neuroengineering

  • German D. Valderrama-Gonzalez
  • T. M. McGinnity
  • Liam Maguire
  • QingXiang Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


Powerful information processing functions are performed in the mammalian retina in which basic units are different types of neurons. This paper presents the types of neurons and their roles in the visual processing system. The aim is to review the principles of how an artificial visual system could be constructed based on a comprehensive understanding of biological systems.


Retina cell types neuroengineering computational neuroscience artificial visual systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bharath, A., Petrou, M.: Next Generation Artificial Vision Systems Reverse Engineering the Human Visual System. Artech House (2008)Google Scholar
  2. 2.
    Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Hubel, D.H.: Eye, Brain and Vision. Scientific American, New York (1988)Google Scholar
  4. 4.
    Rodieck, R.W.: The First Steps in Seeing. Sinauer associates, Sunderland (1998)Google Scholar
  5. 5.
    Masland, R.H.: The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001)CrossRefGoogle Scholar
  6. 6.
    Merigan, W.H.: How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993)CrossRefGoogle Scholar
  7. 7.
    Lehky, S.R., Sejrtowski, T.J.: Network model of shape from shading: Neural function arises from both receptive and projective fields. Nature 333, 452–454 (1999)CrossRefGoogle Scholar
  8. 8.
    Huang, C., Lin, C.: Bio-Inspired Computer Fovea Model Based on Hexagonal-Type Cellular Neural Network. IEEE Transactions on circuits and systems part 1 regular papers 54, 35–47 (2007)CrossRefGoogle Scholar
  9. 9.
    Dacey, D.M.: Parallel Pathways for Spectral Coding in Primate Retina. Annual Reviews in Neuroscience 23, 743–775 (2000)CrossRefGoogle Scholar
  10. 10.
    Wässle, H., Dacey, D.M., Haun, T., Haverkamp, S., Grünert, U., Boycott, B.B.: The mosaic of horizontal cells in the macaque monkey retina: With a comment on biplexiform ganglion cells. Vis. Neurosci. 17, 591–608 (2000)CrossRefGoogle Scholar
  11. 11.
    Rodieck, R.W., Watanabe, M.: Survey of the morphology of the macaque retinal ganglion cells that project to the pretectum, superior colliculus and parvocellular laminae of the lateral geniculate nucleus. J. Comp. Neurol. 338, 289–303 (1993)CrossRefGoogle Scholar
  12. 12.
    DeVries, S.H.: Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels. Neuron 28, 847–856 (2000)CrossRefGoogle Scholar
  13. 13.
    Field, G.D., Chichilnisky, E.J.: Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007)CrossRefGoogle Scholar
  14. 14.
    Wässle, H., Boycott, B.B.: Functional architecture of the mammalian retina. Physiological Reviews 71, 447–470 (1991)Google Scholar
  15. 15.
    Dacey, D.M., Lee, B.B.: The‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994)CrossRefGoogle Scholar
  16. 16.
    Dacey, D., Peterson, B., Robinson, F.: Identification of an S-cone Opponent OFF Pathway in the Macaque Monkey Retina: Morphology, Physiology and Possible Circuitry. Invest. Ophthalmol. Vis. Sci. 43, 2983 (2002)Google Scholar
  17. 17.
    Kouyama, N., Marshak, D.: Bipolar cells specific for blue cones in the macaque retina. Journal of Neuroscience 12, 1233–1252 (1992)Google Scholar
  18. 18.
    Lukasiewicz, P.D.: Synaptic mechanisms that shape visual signaling at the inner retina. Prog. Brain Res. 147, 205–218 (2005)CrossRefGoogle Scholar
  19. 19.
    Ichinose, T., Lukasiewicz, P.D.: Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells. J. Physiol. 565, 517–535 (2005)CrossRefGoogle Scholar
  20. 20.
    Yamada, E.S., Bordt, A.S., Marshak, D.W.: Wide-field ganglion cells in macaque retinas. Vis. Neurosci. 22, 383–393 (2005)CrossRefGoogle Scholar
  21. 21.
    Dacey, D.M., Peterson, B.B., Robinson, F.R., Gamlin, P.D.: Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types. Neuron 37, 15–27 (2003)CrossRefGoogle Scholar
  22. 22.
    Kolb, H., Linberg, K.A., Fisher, S.K.: Neurons of the human retina: A Golgi study. J. Comp. Neurol. 318, 147–187 (1992)CrossRefGoogle Scholar
  23. 23.
    Isayama, T., Berson, D.M., Pu, M.: Theta ganglion cell type of the cat retina. J. Comp. Neurol. 417, 32–48 (2000)CrossRefGoogle Scholar
  24. 24.
    Moore, R.Y., Speh, J.C., Card, J.P.: The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352, 351–366 (1995)CrossRefGoogle Scholar
  25. 25.
    Pu, M., Berson, D.M., Pan, T.: Structure and function of retinal ganglion cells innervating the cat’s geniculate wing: an in vitro study. Journal of Neuroscience 14, 4338–4358 (1994)Google Scholar
  26. 26.
    Amthor, F., Takahashi, E., Oyster, C.: Morphologies of rabbit retinal ganglion cells with complex receptive fields. Journal of Comparative Neurology 280, 97–121 (1989)CrossRefGoogle Scholar
  27. 27.
    Kaplan, E., Shapley, R.M.: X and Y cells in the lateral geniculate nucleus of macaque monkeys. The Journal of Physiology 330, 125–143 (1982)CrossRefGoogle Scholar
  28. 28.
    Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Springer, Heidelberg (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • German D. Valderrama-Gonzalez
    • 1
  • T. M. McGinnity
    • 1
  • Liam Maguire
    • 1
  • QingXiang Wu
    • 1
  1. 1.Intelligent Systems Research Centre, School of Computing and Intelligent SystemsUniversity of Ulster at Magee CampusDerryNorthern Ireland, UK

Personalised recommendations