Information Processing and Timing Mechanisms in Vision

  • Andrea Guazzini
  • Pietro Lió
  • Andrea Passarella
  • Marco Conti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


Researches of neural mechanism of time perception is one of the fastest growing areas of neuroscience. The visual system presents several examples of timing mechanisms. Its activity is characterized by a complex network of synchronized elements which cooperate together. Some authors recently proposed that neural circuits should be inherently capable of temporal processing as a result of the natural complexity of cortical networks coupled with the presence of time-dependent network properties. We present an adaptive feedback model which, through a temporal-to-spatial transformation is able to explain recent experiments on the relationships between vision and time/space perception.


Target Stimulus Synaptic Weight Neural Signal Time Perception Timing Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abarbanel, H., Gibb, L., Huerta, R., Rabinovich, M.: Biophysical model of synaptic plasticity dynamics. Biol. Cybern. 89, 214–226 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abeles, M.: Local Cortical Circuits. Springer, Berlin (1982)CrossRefGoogle Scholar
  3. 3.
    Buonomano, D.V.: Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity. The Journal of Neuroscience 20(3), 1129–1141 (2000)Google Scholar
  4. 4.
    Burr, D.: Eye Movements: Keeping Vision Stable. The Current Biology 14, 195–197 (2004)CrossRefGoogle Scholar
  5. 5.
    Burr, D., Morrone, C.: Perception: Transient Disruptions to Neural Space Time. The Current Biology 16(19), 848 (2006)CrossRefGoogle Scholar
  6. 6.
    Burr, D., Morrone, C.: Time Perception: Space time in the Brain. Current Biology 16(5), 171–173 (2006)CrossRefGoogle Scholar
  7. 7.
    Dittman, J.S., Kreitzer, A.C., Regehr, W.G.: Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience 20, 1374–1385 (2007)Google Scholar
  8. 8.
    Hertz, J., Prugel-Bennett, A.: Learning short synfire chains by selforganization. Network 7, 357–363 (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ibbotson, M., Crowder, N., Price, N.: Neural basis of time changes during saccades. Current Biology 16(19), 834–836 (2005)CrossRefGoogle Scholar
  10. 10.
    Johnston, A., Arnold, D.H., Nishida, S.: Spatially Localized Distortions of Event time. Current Biology 16, 472–479 (2006)CrossRefGoogle Scholar
  11. 11.
    Karmarkar, U., Buonomano, D.: Timing in the Absence of Clocks: Encoding time in Neural Network States. Neuron 53(3), 427–438 (2007)CrossRefGoogle Scholar
  12. 12.
    Lewis, P.A., Walsh, V.: Time perception: components of the brain’s clock. Current Biology 15(10), 389–391 (2005)CrossRefGoogle Scholar
  13. 13.
    Guazzini, A., Lio, P., Conti, M., Passarella, A.: Complex network modeling of saccades control, Frontiers in Neuroinformatics. In: Neuroinformatics 2008 (2008), doi:10.3389/conf.neuro.11.2008.01.039Google Scholar
  14. 14.
    Meck, W.H.: Neuropsychology of timing and time perception. Brain Cognition 58(1), 1–8 (2005)CrossRefGoogle Scholar
  15. 15.
    Rocca, E.D., Burr, D.C.: Large contrast effects in the discrimination of short temporal intervals. Perception 36 ECVP (2007)Google Scholar
  16. 16.
    Ross, J., Burr, D., Morrone, C.: Suppression of the magnocellular pathway during saccades. Behavioural Brain Research 80, 1–8 (1996)CrossRefGoogle Scholar
  17. 17.
    Ross, J., Morrone, C., Goldberg, E., Burr, D.: Changes in visual perception at the time of saccades. TRENDS in Neurosciences 16, 472–479 (2001)Google Scholar
  18. 18.
    Wennekers, T., Palm, G.: Controlling the speed of synfire chains. In: Malsburg, C., Seelen, W., Vorbruggen, J., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrea Guazzini
    • 1
  • Pietro Lió
    • 2
  • Andrea Passarella
    • 1
  • Marco Conti
    • 1
  1. 1.Institute of Informatics and Telematics - IIT - CNRPisaItaly
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations