Time Coding of Input Strength Is Intrinsic to Synapses with Short Term Plasticity

  • Márton A. Hajnal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


Many neocortical synapses adapt their postsynaptic response to the input rate of the presynaptic neuron through different mechanisms of short term plasticity: Steady state postsynaptic firing rates become invariant to the presynaptic frequency. Still, timing may convey information about presynaptic rate: The postsynaptic current is shown here analytically to peak earlier when presynaptic input frequency increases. An approximate 1ms/10Hz coding sensitivity for AMPA, and 1ms/1Hz for NMDA receptors in post synaptic potentials was found by a multicompartmental synapse simulation using detailed kinetic channel models. The slower the ion channels, the more expressed the time lag signal, but the same time the less the available headroom when compared at identical frequencies. Such timing code of input strength is transmitted most efficiently when postsynaptic amplitude is normalized by the input rate. Short term plasticity is a mechanism local to the synapse that provides such normalizing framework.


Short term plasticity frequency adaptation timing time code time shift time lag neural code synapse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synaptic input. Neuron 35(4), 773–782 (2002)CrossRefGoogle Scholar
  2. 2.
    Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431(7010), 796–803 (2004)CrossRefGoogle Scholar
  3. 3.
    Wark, B., Lundstrom, B.N., Fairhall, A.: Sensory adaptation. Current Opinion in Neurobiology 17(4), 423–429 (2007)CrossRefGoogle Scholar
  4. 4.
    Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annual Review of Physiology 64(1), 355–405 (2002)CrossRefGoogle Scholar
  5. 5.
    Grande, L.A., Spain, W.J.: Synaptic depression as a timing device. Physiology  20(3), 201–210 (2005)CrossRefGoogle Scholar
  6. 6.
    Yang, H., Xu-Friedman, M.A.: Relative roles of different mechanisms of depression at the mouse endbulb of held. Journal of Neurophysiology 99(5), 2510–2521 (2008)CrossRefGoogle Scholar
  7. 7.
    Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G.A., Jaffe, D.B.: Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 18(4), 411–424 (2008)CrossRefGoogle Scholar
  8. 8.
    Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B.: A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience 17(20), 7926–7940 (1997)Google Scholar
  9. 9.
    Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M.: Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology  87(1), 140–148 (2002)Google Scholar
  10. 10.
    Graham, B., Stricker, C.: Short term plasticity provides temporal filtering at chemical synapses. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 268–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Clements, J., Lester, R., Tong, G., Jahr, C., Westbrook, G.: The time course of glutamate in the synaptic cleft. Science 258(5087), 1498–1501 (1992)CrossRefGoogle Scholar
  12. 12.
    Partin, K.M., Fleck, M.W., Mayer, M.L.: AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. Journal of Neuroscience 16(21), 6634–6647 (1996)Google Scholar
  13. 13.
    Dingledine, R., Borges, K., Bowie, D., Traynelis, S.F.: The glutamate receptor ion channels. Pharmacological Reviews 51(1), 7–62 (1999)Google Scholar
  14. 14.
    Raghavachari, S., Lisman, J.E.: Properties of quantal transmission at ca1 synapses. Journal of Neurophysiology 92(4), 2456–2467 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhang, W., Howe, J.R., Popescu, G.K.: Distinct gating modes determine the biphasic relaxation of nmda receptor currents. Nature Neuroscience 11(12), 1373–1375 (2008)CrossRefGoogle Scholar
  16. 16.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  17. 17.
    Destexhe, A., Mainen, Z., Sejnowski, T.: Kinetic models of synaptic transmission. In: Methods in Neuronal Modeling, pp. 1–25. MIT press, Cambridge (1998)Google Scholar
  18. 18.
    Clements, J.D., Westbrook, G.L.: Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl–aspartate receptor. Neuron 7(4), 605–613 (1991)CrossRefGoogle Scholar
  19. 19.
    Destexhe, A., Mainen, Z.F., Senowski, T.J.: An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation 6(1), 14–18 (1994)CrossRefGoogle Scholar
  20. 20.
    Segev, I., Rall, W.: Computational study of an excitable dendritic spine. Journal of Neurophysiology 60(2), 499–523 (1988)Google Scholar
  21. 21.
    Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T., Miyashita, Y., Iino, M., Kasai, H.: Dendritic spine geometry is critical for ampa receptor expression in hippocampal ca1 pyramidal neurons. Nature Neuroscience 4(11), 1086–1092 (2001)CrossRefGoogle Scholar
  22. 22.
    Tsay, D., Yuste, R.: On the electrical function of dendritic spines. Trends in Neurosciences 27(2), 77–83 (2004)CrossRefGoogle Scholar
  23. 23.
    Araya, R., Eisenthal, K.B., Yuste, R.: Dendritic spines linearize the summation of excitatory potentials. Proceedings of the National Academy of Sciences 103(49), 18799–18804 (2006)CrossRefGoogle Scholar
  24. 24.
    Elhilali, M., Fritz, J.B., Klein, D.J., Simon, J.Z., Shamma, S.A.: Dynamics of precise spike timing in primary auditory cortex. Journal of Neuroscience  24(5), 1159–1172 (2004)CrossRefGoogle Scholar
  25. 25.
    Gasparini, S., Migliore, M., Magee, J.C.: On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. Journal of Neuroscience  24(49), 11046–11056 (2004)CrossRefGoogle Scholar
  26. 26.
    Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P.: Modulation of neuronal interactions through neuronal synchronization. Science 316(5831), 1609–1612 (2007)CrossRefGoogle Scholar
  27. 27.
    Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience 9(3), 206–221 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rumsey, C.C., Abbott, L.F.: Synaptic democracy in active dendrites. Journal of Neurophysiology 96(5), 2307–2318 (2006)CrossRefGoogle Scholar
  29. 29.
    Chadderton, P., Margrie, T.W., Hausser, M.: Integration of quanta in cerebellar granule cells during sensory processing. Nature 428(6985), 856–860 (2004)CrossRefGoogle Scholar
  30. 30.
    Womelsdorf, T., Fries, P.: The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology 17(2), 154–160 (2007)CrossRefGoogle Scholar
  31. 31.
    Fries, P., Nikolic, D., Singer, W.: The gamma cycle. Trends in Neurosciences  30(7), 309–316 (2007)CrossRefGoogle Scholar
  32. 32.
    Mongillo, G., Barak, O., Tsodyks, M.: Synaptic theory of working memory. Science 319(5869), 1543–1546 (2008)CrossRefGoogle Scholar
  33. 33.
    Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience  3(9), 919–926 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Márton A. Hajnal
    • 1
  1. 1.Eötvös Loránd UniversityBudapestHungary

Personalised recommendations