Structural Analysis on STDP Neural Networks Using Complex Network Theory

  • Hideyuki Kato
  • Tohru Ikeguchi
  • Kazuyuki Aihara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


Synaptic plasticity is one of essential and central functions for the memory, the learning, and the development of the brains. Triggered by recent physiological experiments, the basic mechanisms of the spike-timing-dependent plasticity (STDP) have been widely analyzed in model studies. In this paper, we analyze complex structures in neural networks evolved by the STDP. In particular, we introduce the complex network theory to analyze spatiotemporal network structures constructed through the STDP. As a result, we show that nonrandom structures emerge in the neural network through the STDP.


Synaptic Plasticity Degree Distribution Characteristic Path Length Spatiotemporal Structure Surrogate Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markram, H., Lüboke, J., Frotscher, M., Sakmann, B.: Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 275, 213–215 (1997)CrossRefGoogle Scholar
  2. 2.
    Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997)CrossRefGoogle Scholar
  3. 3.
    Bi, G., Poo, M.: Synaptic Modifications in Cultured Hippocampal Neurons: Dependece on Spike Timing, Synaptic Strength and Postsynaptic Cell Type. The Journal of Neuroscience 18(24), 10464–10472 (1998)Google Scholar
  4. 4.
    Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., ming Poo, M.: A Critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)CrossRefGoogle Scholar
  5. 5.
    Feldman, D.E.: Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex. Neuron 27, 45–56 (2000)CrossRefGoogle Scholar
  6. 6.
    Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–437 (2002)CrossRefGoogle Scholar
  7. 7.
    Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nature neuroscience supplement 3, 1178–1183 (2000)CrossRefGoogle Scholar
  8. 8.
    Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3(9), 919–926 (2000)CrossRefGoogle Scholar
  9. 9.
    van Rossum, M.C.W., Bi, G.Q., Turrigiano, G.G.: Stable Hebbian Learning from Spike Timing-Dependent Plasticity. The Journal of Neuroscience 20(23), 8812–8821 (2000)Google Scholar
  10. 10.
    Rubin, J., Lee, D.D., Sompolinsky, H.: Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity. Physical Review Letters 86(2), 364–367 (2001)CrossRefGoogle Scholar
  11. 11.
    Gütig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity. The Journal of Neuroscience 23(9), 3687–3714 (2003)Google Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  13. 13.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Computation 15, 1511–1523 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89, 208701 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hideyuki Kato
    • 1
  • Tohru Ikeguchi
    • 1
    • 3
  • Kazuyuki Aihara
    • 2
    • 3
  1. 1.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
  3. 3.Aihara Complexity Modelling Project, ERATO, JSTTokyoJapan

Personalised recommendations