Advertisement

Learning Complex Population-Coded Sequences

  • Kiran V. Byadarhaly
  • Mithun Perdoor
  • Suresh Vasa
  • Emmanuel Fernandez
  • Ali A. Minai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

In humans and primates, the sequential structure of complex actions is apparently learned at an abstract “cognitive” level in several regions of the frontal cortex, independent of the control of the immediate effectors by the motor system. At this level, actions are represented in terms of kinematic parameters – especially direction of end effector movement – and encoded using population codes. Muscle force signals are generated from this representation by downstream systems in the motor cortex and the spinal cord.

In this paper, we consider the problem of learning population-coded kinematic sequences in an abstract neural network model of the medial frontal cortex. For concreteness, the sequences are represented as line drawings in a two-dimensional workspace. Learning such sequences presents several challenges because of the internal complexity of the individual sequences and extensive overlap between sequences. We show that, by using a simple module-selection mechanism, our model is capable of learning multiple sequences with complex structure and very high cross-sequence similarity.

Keywords

Sequence learning population coding motor system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georgopoulos, A., Kalaska, J., Caminiti, R., Massey, J.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2, 1527–1537 (1982)Google Scholar
  2. 2.
    Schwarz, A., Kettner, R., Georgopoulos, A.: Primate motor cortex and free arm movement to visual targets in 3-d space. i. relations between single cell discharge and direction of movement. Journal of Neuroscience 8, 2913–2927 (1988)Google Scholar
  3. 3.
    Mushiake, H., Inase, M., Tanji, J.: Neuronal activity in the primate premotor, supplementary and precentral motor cortex during visually guided and internally determined sequential movements. Journal of Neurophysiololgy 66, 705–718 (1991)Google Scholar
  4. 4.
    Schwartz, A.: Motor cortical activity during drawing movements: single unit activity during sinusoid tracing. Journal of Neurophysiology 68, 528–541 (1992)Google Scholar
  5. 5.
    Kakei, S., Hoffman, D., Strick, P.: Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999)CrossRefGoogle Scholar
  6. 6.
    Seitz, R., Stephan, K., Binkofski, F.: Control of action as mediated by the human frontal lobe. Experimental Brain Research 133, 71–80 (2000)CrossRefGoogle Scholar
  7. 7.
    Shima, K., Tanji, J.: Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology 84, 2148–2160 (2000)Google Scholar
  8. 8.
    Kakei, S., Hoffman, D., Strick, P.: Direction of action is represented in the ventral premotor cortex. Nature Neuroscience 4, 1020–1025 (2001)CrossRefGoogle Scholar
  9. 9.
    Nakamura, K., Sakai, K., Hikosaka, O.: Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology 80, 2671–2687 (1998)Google Scholar
  10. 10.
    Averbeck, B., Chafee, M., Crowe, D., Georgopoulos, A.: Parallel processing of serial movements in prefrontal cortex. Proceedings of the National Academy of Sciences USA 99, 13172–13177 (2002)CrossRefGoogle Scholar
  11. 11.
    Averbeck, B., Chafee, M., Crowe, D., Georgopoulos, A.: Neural activity in prefrontal cortex during copying geometrical shapes. i. single cells encode shape, sequence and metric parameters. Experimental Brain Research 150, 127–141 (2003)CrossRefGoogle Scholar
  12. 12.
    Averbeck, B., Crowe, D., Chafee, M., Georgopoulos, A.: Neural activity in prefrontal cortex during copying geometrical shapes. ii. decoding shape segments from neuronal ensembles. Experimental Brain Research 150, 142–153 (2003)CrossRefGoogle Scholar
  13. 13.
    d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of natural motor behavior. Nature Neuroscience 6, 300–308 (2003)CrossRefGoogle Scholar
  14. 14.
    Lu, X., Ashe, J.: Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45, 967–973 (2005)CrossRefGoogle Scholar
  15. 15.
    Graziano, M.: The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience 29, 105–134 (2006)CrossRefGoogle Scholar
  16. 16.
    Ajemian, R., Bullock, D., Grossberg, S.: Kinematic coordinates in which motor cortical cells encode movement direction. Journal of Neurophysiology 84, 2191–2203 (2000)Google Scholar
  17. 17.
    Sergio, L., Kalaska, J.: Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. Journal of Neurophysiology 89, 212–228 (2003)CrossRefGoogle Scholar
  18. 18.
    Cisek, P.: Cortical mechanisms of action selection: the affordance competition hypothesis. Phil. Trans. R. Soc. B 362, 1585–1599 (2007)CrossRefGoogle Scholar
  19. 19.
    Matsuzaka, Y., Picard, N., Strick, P.: Skill representation in the primary motor cortex after long-term practice. Journal of Neurophysiology 97, 1819–1832 (2007)CrossRefGoogle Scholar
  20. 20.
    Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., Grossberg, S.: Assessing the function of motor cortex: single-neuron models of how neural response is modulated by limb biomechanics. Neuron 58, 414–428 (2008)CrossRefGoogle Scholar
  21. 21.
    Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006)CrossRefGoogle Scholar
  22. 22.
    Ijspreet, A., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007)CrossRefGoogle Scholar
  23. 23.
    Graybiel, A.: Building action repertoires: memory and learning functions of the basal ganglia. Current Opinion in Neurobiology 5, 733–741 (1995)CrossRefGoogle Scholar
  24. 24.
    Lukashin, A., Georgopoulos, A.: A neural network for coding of trajectories by time series of neuronal population vectors. Neural Computation 6, 19–28 (1994)CrossRefGoogle Scholar
  25. 25.
    Lukashin, A., Wilcox, G., Georgopoulos, A.: Overlapping neural networks for multiple motor engrams. Proceedings of the National Academy of Sciences, USA 91, 8651–8654 (1994)CrossRefGoogle Scholar
  26. 26.
    Lukashin, A., Amirikian, B., Mozhaev, V., Wilcox, G., Georgopoulos, A.: Modeling motor cortical operations by an attractor network of stochastic neurons. Biological Cybernetics 74, 255–261 (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ans, B., Coiton, Y., Gilhodes, J.P., Velay, J.L.: A neural network model for temporal sequence learning and motor programming. Neural Networks 7, 1461–1476 (1994)CrossRefGoogle Scholar
  28. 28.
    Bullock, D., Cisek, P., Grossberg, S.: Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex 8, 48–62 (1998)CrossRefGoogle Scholar
  29. 29.
    Taylor, J., Taylor, N.: Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory. Biological Cybernetics 82, 415–432 (2000)CrossRefzbMATHGoogle Scholar
  30. 30.
    Taylor, N., Taylor, J.: Hard-wired models of working memory and temporal sequence storage and generation. Neural Networks 13, 201–224 (2000)CrossRefGoogle Scholar
  31. 31.
    Grossberg, S., Paine, R.: A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks 13, 999–1046 (2000)CrossRefGoogle Scholar
  32. 32.
    Doya, K.: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks 12, 961–974 (1999)CrossRefGoogle Scholar
  33. 33.
    Houk, J.: Agents of the mind. Biol. Cybern. 92, 427–437 (2005)CrossRefzbMATHGoogle Scholar
  34. 34.
    Minai, A., Barrows, G., Levy, W.: Disambiguation of pattern sequences with recurrent networks. In: Proc. WCNN, San Diego, vol. IV, pp. 176–180 (1994)Google Scholar
  35. 35.
    Sun, R., Giles, C.: Sequence Learning: Paradigms, Algorithms, and Applications. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Reiss, M., Taylor, J.: Storing temporal sequences. Neural Networks 4, 773–787 (1991)CrossRefGoogle Scholar
  37. 37.
    Doboli, S., Minai, A.: Using latent attractors to discern temporal order. In: Proceedings of IJCNN, Budapest, Hungary (July 2004)Google Scholar
  38. 38.
    Fujii, N., Graybiel, A.: Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301, 1246–1749 (2003)CrossRefGoogle Scholar
  39. 39.
    Jog, M., Kubota, Y., Connolly, C., Hillgaart, V., Graybiel, A.: Building neural representations of habits. Science 286, 1745–1749 (1999)CrossRefGoogle Scholar
  40. 40.
    Matsuzaka, Y., Aizawa, H., Tanji, J.: A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. Journal of Neurophysiology 68, 653–662 (1992)Google Scholar
  41. 41.
    Ghanem, A., Minai, A.: A modular gene regulatory network model of ontogenesis. In: Proc. Int. Conf. on Complex Sys., Boston, MA (2007)Google Scholar
  42. 42.
    Doboli, S., Minai, A., Brown, V.: Adaptive dynamic modularity in a connectionist model of context-dependent idea generation. In: Proceedings of the IJCNN 2007, Orlando, FL, pp. 2183–2188 (2007)Google Scholar
  43. 43.
    Minai, A., Iyer, L., Padur, D., Doboli, S.: A dynamic connectionist model of idea generation. In: Proceedings of the IJCNN 2009, Atlanta, GA (2009)Google Scholar
  44. 44.
    Perumal, S., Minai, A.: Stable-yet-switchable (sys) attractor networks. In: Proceedings of the IJCNN 2009, Atlanta, GA (2009)Google Scholar
  45. 45.
    Mountcastle, V.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)CrossRefGoogle Scholar
  46. 46.
    Widrow, B., Hoff, M.: Adaptive switching circuits. In: 1960 IRE WESCON Convention Record, Part 4, pp. 96–104 (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kiran V. Byadarhaly
    • 1
  • Mithun Perdoor
    • 1
  • Suresh Vasa
    • 1
  • Emmanuel Fernandez
    • 1
  • Ali A. Minai
    • 1
  1. 1.Department of Electrical & Computer EngineeringUniversity of CincinnatiCincinnati

Personalised recommendations