Advertisement

A Framework for Simulation and Analysis of Dynamically Organized Distributed Neural Networks

  • Vladyslav Shaposhnyk
  • Pierre Dutoit
  • Victor Contreras-Lámus
  • Stephen Perrig
  • Alessandro E. P. Villa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

We present a framework for modelling and analyzing emerging neural activity from multiple interconnected modules, where each module is formed by a neural network. The neural network simulator operates a 2D lattice tissue of leaky integrate-and-fire neurons with genetic, ontogenetic and epigenetic features. The Java Agent DEvelopment (JADE) environment allows the implementation of an efficient automata-like virtually unbound and platform-independent system of agents exchanging hierarchically organized messages. This framework allowed us to develop linker agents capable to handle dynamic configurations characterized by the entrance and exit of additional modules at any time following simple rewiring rules. The development of a virtual electrode allows the recording of a “neural” generated signal, called electrochipogram (EChG), characterized by dynamics close to biological local field potentials and electroencephalograms (EEG). These signals can be used to compute Evoked Potentials by complex sensory inputs and comparisons with neurophysiological signals of similar kind.

Keywords

Spiking neural networks hierarchical neural networks distributed computing computational neuroscience bio-informatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haikonen, P.O.: Robot Brains: Circuits and Systems for Conscious Machines. WileyBlackwell (2007)Google Scholar
  2. 2.
    Sanchez, E., Perez-Uribe, A., Upegui, A., Thoma, Y., Moreno, J.M., Villa, A., Volken, H., Napieralski, A., Sassatelli, G., Lavarec, E.: Perplexus: Pervasive computing framework for modeling complex virtually-unbounded systems. In: AHS 2007: Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Systems, Washington, DC, USA, pp. 587–591. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  3. 3.
    Upegui, A., Thoma, Y., Sanchez, E., Perez-Uribe, A., Moreno, J.M., Madrenas, J., Sassatelli, G.: The perplexus bio-inspired hardware platform: A flexible and modular approach. Int. J. Know.-Based Intell. Eng. Syst. 12(3), 201–212 (2008)Google Scholar
  4. 4.
    Brousse, O., Sassatelli, G., Gil, T., Robert, M., Grize, F., Sanchez, E., Upegui, A., Thoma, Y.: The perplexus programming framework: Combining bio-inspiration and agent-oriented programming for the simulation of large scale complex systems. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 402–407. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Benoskova, L., Kasabov, N.: Computational Neurogenetic Modeling. Springer, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Elul, R.: The genesis of the eeg. Int. Rev. Neurobiol. 15, 227–272 (1972)CrossRefGoogle Scholar
  7. 7.
    Iglesias, J., Villa, A.E.P.: Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks. BioSystems 89, 287–293 (2007)CrossRefGoogle Scholar
  8. 8.
    Iglesias, J., Chibirova, O., Villa, A.: Nonlinear dynamics emerging in large scale neural networks with ontogenetic and epigenetic processes. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 579–588. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Roberts, P.D., Bell, C.C.: Spike timing dependent synaptic plasticity in biological systems. Biol. Cybern. 87, 392–403 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cerebral Cortex 14, 933–944 (2004)CrossRefGoogle Scholar
  11. 11.
    Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.: Dynamics of pruning in simulated large-scale spiking neural networks. BioSystems 79(1), 11–20 (2005)CrossRefGoogle Scholar
  12. 12.
    FIPA TC C: Fipa communicative act library specification. Technical report, IEEE Foundation for Intelligent Physical Agents (2001)Google Scholar
  13. 13.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems With Jade. Wiley, Wiltshire (2007)CrossRefGoogle Scholar
  14. 14.
    Kemp, B., Olivan, J.: European data format [‘]plus’ (edf+), an edf alike standard format for the exchange of physiological data. Clinical Neurophysiology 114(9), 1755–1761 (2003)CrossRefGoogle Scholar
  15. 15.
    Dorigo, M., Trianni, V., Sahin, E., Gros, R., Labella, T.H., Baldassarre, G., Nolfi, S., Mondada, F., Deneubourg, J.L., Floreano, D., Gambardella, L.M.: Evolving Self-Organizing Behaviors for a Swarm-bot. Autonomous Robots, special Issue on Swarm Robotics 17(2-3), 223–245 (2004); September - November 2004 Sponsor: swarm-bots, OFES 01-0012-1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vladyslav Shaposhnyk
    • 1
    • 2
  • Pierre Dutoit
    • 1
    • 3
  • Victor Contreras-Lámus
    • 1
  • Stephen Perrig
    • 3
  • Alessandro E. P. Villa
    • 1
    • 3
    • 4
  1. 1.Neuroheuristic Research Group, Grenoble Institute of NeuroscienceUniversité Joseph FourierGrenobleFrance
  2. 2.Non-linear Analysis Department, Institute for Applied System AnalysisState Techical University “Kyivskyy Politechnichnyy Instytut”KievUkraine
  3. 3.Sleep Research Laboratory, Dept. of Psychiatry Belle-IdéeHôpitaux Universitaires de GenèveSwitzerland
  4. 4.Neuroheuristic Research Group, Information Science InstituteUniversity of LausanneSwitzerland

Personalised recommendations