Hippocampus, Amygdala and Basal Ganglia Based Navigation Control

  • Ansgar Koene
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


In this paper we present a novel robot navigation system aimed at testing hypotheses about the roles of key brain areas in foraging behavior of rats. The key components of the control network are: 1. a Hippocampus inspired module for spatial localization based on associations between sensory inputs and places; 2. an Amygdala inspired module for the association of values with places and sensory stimuli; 3. a Basal Ganglia inspired module for the selection of actions based on the evaluated sensory inputs. By implementing this Hippocampus-Amygdala-Basal Ganglia based control network with a simulated rat embodiment we intend to test not only our understanding of the individual brain areas but especially the interaction between them. Understanding the neural circuits that allows rats to efficiently forage for food will also help to improve the ability of robots to autonomously evaluate and select navigation targets.


Action selection navigation biologically inspired Hippocampus Amygdala Basal Ganglia place value association 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, G.E., Crutcher, M.D.: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences 13(7), 266–271 (1990)CrossRefGoogle Scholar
  2. 2.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research 34, 171–175 (1971)Google Scholar
  3. 3.
    O’Keefe, J., Conway, D.H.: Hippocampal place units in the freely moving rat: Why they fire when they fire. Experimental Brain Research 31, 573–590 (1978)Google Scholar
  4. 4.
    Morris, R.G., Garrud, P., Rawlins, J.N., O’Keefe, J.: Place navigation impaired in rats with hippocampal lesions. Nature 24, 681–683 (1982)CrossRefGoogle Scholar
  5. 5.
    Jeffery, K.J., O’Keefe, J.M.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Experimental Brain Research 127, 151–161 (1999)CrossRefGoogle Scholar
  6. 6.
    Phillips, R.G., LeDoux, J.E.: Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience 106, 274–285 (1992)CrossRefGoogle Scholar
  7. 7.
    Kesner, R.P., Walser, R.D., Winzenried, G.: Central but not basolateral amygdala mediates memory for positive affective experiences. Behavioural Brain Research 33, 189–195 (1989)CrossRefGoogle Scholar
  8. 8.
    Everitt, B.J., Morris, K.A., O’Brien, A., Robbins, T.W.: The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence of limbic-striatal interactions underlying reward-related processes. Neuroscience 42, 1–18 (1991)CrossRefGoogle Scholar
  9. 9.
    Mink, J.W.: The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology 50(4), 381–425 (1996)CrossRefGoogle Scholar
  10. 10.
    Wickens, J.: Basal ganglia: structure and computations. Network-Computation in Neural Systems 8(4), R77–R109 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Prescott, T.J., Redgrave, P., Gurney, K.N.: Layered control architectures in robots and vertebrates. Adaptive Behavior 7(1), 99–127 (1999)CrossRefGoogle Scholar
  12. 12.
    Redgrave, P., Prescott, T., Gurney, K.N.: The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999)CrossRefGoogle Scholar
  13. 13.
    Burn, C.C.: What is it like to be a rat? Rat sensory perception and its implications for experimental design and rat welfare. Appliead Animal Behaviour Science 112, 1–32 (2008)CrossRefGoogle Scholar
  14. 14.
    Bird, C.M., Burgess, N.: The hippocampus and memory: insights from spatial processing. Nature Reviews Neuroscience 9, 182–194 (2008)CrossRefGoogle Scholar
  15. 15.
    Rolls, E.R., Stringer, S.M.: Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction. Neural Networks 18(9), 1229–1241 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Humphries, M.D., Gurney, K.N.: The role of intra-thalamic and thalamocortical curcuits in action selection. Network: Computation in Neural Systems 13, 121–156 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Girard, B., Cuzin, V., Guillot, A., Gurney, K.N., Prescott, T.J.: A basal ganglia inspired model of action selection evaluated in a robotic survival task. Journal of Integrative Neuroscience 2(2), 179–200 (2003)CrossRefGoogle Scholar
  18. 18.
    Prescott, T.J., Montes Gonzalez, F.M., Gurney, K., Humphries, M.D., Redgrave, P.: A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Networks 19, 31–61 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Albertin, S.V., Mulder, A.B., Tabuchi, E., Zugaro, M.B., Wiener, S.I.: Lesions of the medial shell of the nucleus accumbens impair rats in finding larger rewards, but spare reward-seeking behavior. Behav. Brain Res. 117, 173–183 (2000)CrossRefGoogle Scholar
  20. 20.
    Tabuchi, E., Mulder, A.B., Wiener, S.I.: Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats. Hippocampus 10, 717–728 (2000)CrossRefGoogle Scholar
  21. 21.
    Khamassi, M., Mulder, A.B., Tabuchi, E., Douchamps, V., Wiener, S.: Anticipatory reward signals in ventral striatal neurons of behaving rats. European Journal of Neuroscience 28, 1849–1866 (2008)CrossRefGoogle Scholar
  22. 22.
    BRAHMS Modular Execution (Simulation) Framework,
  23. 23.
    Lorenz, K.: Der kumpan in der umwelt des vogels. Journal of Ornithology 83, 137–213 (1935)CrossRefGoogle Scholar
  24. 24.
    Colgan, P.: Animal Motivation. Chapman and Hall, London (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ansgar Koene
    • 1
  • Tony J. Prescott
    • 1
  1. 1.Adaptive Behaviour Research GroupSheffield University,Western BankSheffieldUK

Personalised recommendations