Advertisement

Independent Component Analysis Aided Diagnosis of Cuban Spino Cerebellar Ataxia 2

  • Rodolfo V. García
  • Fernando Rojas
  • Jesús González
  • Belén San Román
  • Olga Valenzuela
  • Alberto Prieto
  • Luis Velázquez
  • Roberto Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

Precedent studies have found abnormalities in the oculomotor system in patients with severe SCA2 form of autosomal dominant cerebellar ataxias (ADCA), including the latency, peak velocity, and deviation in saccadic movements, and causing changes in the morphology of the patient response waveform. This different response suggests a higher degree of statistic independence in sick patients when compared to healthy individuals regarding the patient response to the visual saccadic stimulus. We processed electro-oculogram records of six patient diagnosed with severe ataxia SCA2 and six healthy subjects used as control, employing independent component analysis (ICA), significant differences have been found in the statistical independence of the person response with the stimulus for 60° saccadic tests.

Keywords

Biomedical engineering computer aided diagnosis independent component analysis ataxia SCA2 electro-oculography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burk, K., Fetter, M., Abele, M., Laccone, F., Brice, A., Dichgans, J., Klockgether, T.: Autosomal dominant cerebellar ataxia type i: oculomotor abnormalities in families with sca1, sca2, and sca3. Journal of Neurology 246(9), 789–797 (1999)CrossRefGoogle Scholar
  2. 2.
    Orozco, G., Estrada, R., Perry, T.L., Araa, J., Fernandez, R., Gonzalez-Quevedo, A., Galarraga, J., Hansen, S.: Dominantly inherited olivopontocerebellar atrophy from eastern cuba: Clinical, neuropathological, and biochemical findings. Journal of the Neurological Sciences 93(1), 37–50 (1989)CrossRefGoogle Scholar
  3. 3.
    Pérez, L.V., Cruz, G.S., Ochoa, N.C., Labrada, R.R., Díaz, J.R., Mederos, L.A., Mesa, J.L.: Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. Journal of the Neurological Sciences 263(1-2) (2007)Google Scholar
  4. 4.
    Velázquez, L.: Ataxia espino cerebelosa tipo 2. Principales aspectos neurofisiológicos en el diagnóstico, pronóstico y evaluación de la enfermedad. Ediciones Holguín, Holguín (2006)Google Scholar
  5. 5.
    Rivaud-Pechoux, S., Drr, A., Gaymard, B., Cancel, G., Ploner, C.J., Agid, Y., Brice, A., Pierrot-Deseilligny, C.: Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type i. Annals of Neurology 43(3), 297–302 (1998)CrossRefGoogle Scholar
  6. 6.
    Hutton, J.T., Albrecht, J.W., Kuskowski, M., Schut, L.J.: Abnormal ocular motor function predicts clinical diagnosis of familial ataxia. Neurology 37(4), 698–701 (1987)CrossRefGoogle Scholar
  7. 7.
    Yamamoto, H., Sobue, I.: Analysis of the abnormal ocular movements in spinocerebellar degenerations and the influence of the thyrotropin releasing hormone. Clinical Neurology 20(8), 637–645 (1980)Google Scholar
  8. 8.
    Klostermann, W., Zhlke, C., Heide, W., Kmpf, D., Wessel, K.: Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. Journal of Neurology 244(2), 105–111 (1997)CrossRefGoogle Scholar
  9. 9.
    Velázquez-Pérez, L., Almaguer-Mederos, L., Santos-Falcón, N., Hechavarría-Pupo, R., Sánchez-Cruz, G., Paneque-Herrera, M.: Spinocerebellar ataxia type 2 in cuba. a study of the electrophysiological phenotype and its correlation with clinical and molecular variables. Revista de Neurologia 33(12), 1129–1136 (2001)Google Scholar
  10. 10.
    Virkkala, J., Hasan, J., Vrri, A., Himanen, S.L., Mller, K.: Automatic sleep stage classification using two-channel electro-oculography. Journal of Neuroscience Methods 166(1), 109–115 (2007)CrossRefGoogle Scholar
  11. 11.
    Estrada, E., Nazeran, H., Barragan, J., Burk, J.R., Lucas, E.A., Behbehani, K.: Eog and emg: Two important switches in automatic sleep stage classification. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS 2006, pp. 2458–2461 (2006)Google Scholar
  12. 12.
    Spicker, S., Schulz, J.B., Petersen, D., Fetter, M., Klockgether, T., Dichgans, J.: Fixation instability and oculomotor abnormalities in friedreich’s ataxia. Journal of Neurology 242(8), 517–521 (1995)CrossRefGoogle Scholar
  13. 13.
    Yokota, T., Hayashi, H., Hirose, K., Tanabe, H.: Unusual blink reflex with four components in a patient with periodic ataxia. Journal of Neurology 237(5), 313–315 (1990)CrossRefGoogle Scholar
  14. 14.
    Hubner, J., Sprenger, A., Klein, C., Hagenah, J., Rambold, H., Zuhlke, C., Kompf, D., Rolfs, A., Kimmig, H., Helmchen, C.: Eye movement abnormalities in spinocerebellar ataxia type 17 (sca17). Neurology 69(11), 1160–1168 (2007)CrossRefGoogle Scholar
  15. 15.
    Güven, A., Kara, S.: Classification of electro-oculogram signals using artificial neural network. Expert Systems with Applications 31(1), 199–205 (2006)CrossRefGoogle Scholar
  16. 16.
    Irving, E.L., Steinbach, M.J., Lillakas, L., Babu, R.J., Hutchings, N.: Horizontal saccade dynamics across the human life span. Invest. Ophthalmol. Vis. Sci. 47(6), 2478–2484 (2006)CrossRefGoogle Scholar
  17. 17.
    Kumar, D., Poole, E.: Classification of eog for human computer interface. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, vol. 1, pp. 64–67 (2002)Google Scholar
  18. 18.
    Brunner, S., Hanke, S., Wassertheuer, S., Hochgatterer, A.: Eog pattern recognition trial for a human computer interface. Universal Access in Human-Computer Interaction. Ambient Interaction, 769–776 (2007)Google Scholar
  19. 19.
    Komogortsev, O.V., Khan, J.I.: Eye movement prediction by kalman filter with integrated linear horizontal oculomotor plant mechanical model. In: Proceedings of the 2008 symposium on Eye tracking research and applications, pp. 229–236. ACM, New York (2008)CrossRefGoogle Scholar
  20. 20.
    Vaya, C., Rieta, J.J., Sanchez, C., Moratal, D.: Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: Study of performance. IEEE Transactions on Biomedical Engineering 54(8), 1530–1533 (2007)CrossRefGoogle Scholar
  21. 21.
    Anemuller, J., Sejnowski, T.J., Makeig, S.: Complex independent component analysis of frequency-domain electroencephalographic data. Neural Networks 16(9), 1311–1323 (2003)CrossRefGoogle Scholar
  22. 22.
    Funase, A., Yagi, T., Barros, A.K., Cichocki, A., Takumi, I.: Single trial analysis on saccade-related eeg signal. In: 3rd International IEEE/EMBS Conference on Neural Engineering. CNE 2007, pp. 371–374 (2007)Google Scholar
  23. 23.
    Hironaga, N., Haruhana, K., Liu, L.C., Fenwick, P.B.C., Ioannides, A.A.: Monitoring of eye movement and its use for artifact elimination. International Congress Series 1270, 134–137 (2004)CrossRefGoogle Scholar
  24. 24.
    Milanesi, M., Martini, N., Vanello, N., Positano, V., Santarelli, M., Landini, L.: Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Medical and Biological Engineering and Computing 46(3), 251–261 (2008)CrossRefGoogle Scholar
  25. 25.
    Guilhon, D., Medeiros, E., Barros, A.K.: Ecg data compression by independent component analysis. In: IEEE Workshop on Machine Learning for Signal Processing, pp. 189–193 (2005)Google Scholar
  26. 26.
    Kocyigit, Y., Alkan, A., Erol, H.: Classification of eeg recordings by using fast independent component analysis and artificial neural network. Journal of Medical Systems 32(1), 17–20 (2008)CrossRefGoogle Scholar
  27. 27.
    Hyvarinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)CrossRefGoogle Scholar
  28. 28.
    Cardoso, J.F.: Source separation using higher order moments. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 4, pp. 2109–2112 (1989)Google Scholar
  29. 29.
    Rojas, F., Alvarez, M.R., Puntonet, C.G., Martin-Clemente, R.: Applying neural networks and genetic algorithms to the separation of sources. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 420–429. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Martin-Clemente, R., Puntonet, C.G., Rojas, F.: Post-nonlinear blind source separation using methaheuristics. Electronics Letters 39(24), 1765–1766 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rodolfo V. García
    • 1
  • Fernando Rojas
    • 2
  • Jesús González
    • 2
  • Belén San Román
    • 3
  • Olga Valenzuela
    • 4
  • Alberto Prieto
    • 2
  • Luis Velázquez
    • 5
  • Roberto Rodríguez
    • 5
  1. 1.Network DepartmentU. of Holguín, Spanish MAEC-AECID fellowshipCuba
  2. 2.Department of Computer Architecture and TechnologyU. of GranadaSpain
  3. 3.PhD StudentUniversity of GranadaSpain
  4. 4.Department of Applied MathematicsUniversity of GranadaSpain
  5. 5.Centre for the Research and Rehabilitation of Hereditary Ataxias “Carlos J. Finlay”HolguínCuba

Personalised recommendations