Calcium Responses Model in Striatum Dependent on Timed Input Sources

  • Takashi Nakano
  • Junichiro Yoshimoto
  • Jeff Wickens
  • Kenji Doya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


The striatum is the input nucleus of the basal ganglia and is thought to be involved in reinforcement learning. The striatum receives glutamate input from the cortex, which carries sensory information, and dopamine input from the substantia nigra, which carries reward information. Dopamine-dependent plasticity of cortico-striatal synapses is supposed to play a critical role in reinforcement learning. Recently, a number of labs reported contradictory results of its dependence on the timing of cortical inputs and spike output. To clarify the mechanisms behind spike timing-dependent plasticity of striatal synapses, we investigated spike timing-dependence of intracellular calcium concentration by constructing a striatal neuron model with realistic morphology. Our simulation predicted that the calcium transient will be maximal when cortical spike input and dopamine input precede the postsynaptic spike. The gain of the calcium transient is enhanced during the “up-state” of striatal cells and depends critically on NMDA receptor currents.


Calcium Transient Calcium Response Medium Spiny Neuron Cortical Input Distal Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reynolds, J., Wickens, J.: Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15(4-6), 507–521 (2002)CrossRefGoogle Scholar
  2. 2.
    Nakano, T., Doi, T., Yoshimoto, J., Doya, K.: A kinetic model of dopamine and calcium dependent striatal synaptic plasticity (submitted, 2009) Google Scholar
  3. 3.
    Pawlak, V., Kerr, J.N.D.: Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci. 28(10), 2435–2446 (2008)CrossRefGoogle Scholar
  4. 4.
    Fino, E., Glowinski, J., Venance, L.: Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci. 25(49), 11279–11287 (2005)CrossRefGoogle Scholar
  5. 5.
    Lisman, J.: A mechanism for the hebb and the anti-hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86(23), 9574–9578 (1989)CrossRefGoogle Scholar
  6. 6.
    Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neurosciences 16(11), 480–487 (1993)CrossRefGoogle Scholar
  7. 7.
    Hansel, C., Artola, A., Singer, W.: Relation between dendritic ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur. J. Neurosci. 9(11), 2309–2322 (1997)CrossRefGoogle Scholar
  8. 8.
    Zucker, R.S.: Calcium- and activity-dependent synaptic plasticity. Current Opinion in Neurobiology 9(3), 305–313 (1999)CrossRefGoogle Scholar
  9. 9.
    Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., Heintz, N.: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961), 917–925 (2003)CrossRefGoogle Scholar
  10. 10.
    Wolf, J.A., Moyer, J.T., Lazarewicz, M.T., Contreras, D., Benoit-Marand, M., O’Donnell, P., Finkel, L.H.: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience 25(40), 9080–9095 (2005)CrossRefGoogle Scholar
  11. 11.
    Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 7(2), 123–135 (2001)CrossRefGoogle Scholar
  12. 12.
    Segev, I.: Single neurone models: oversimple, complex and reduced. Trends in Neurosciences 15(11), 414–421 (1992)CrossRefGoogle Scholar
  13. 13.
    Koch, C.: Biophysics of computation (January 2004)Google Scholar
  14. 14.
    Catterall, W.A.: Structure and regulation of voltage-gated ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16, 521–555 (2000)CrossRefGoogle Scholar
  15. 15.
    Geit, W.V., Achard, P., Schutter, E.D.: Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics (January 2007)Google Scholar
  16. 16.
    Koch, C., Segev, I.: Methods in neuronal modeling: From ions to networks, p. 671 (January 1998)Google Scholar
  17. 17.
    Surmeier, D.J., Bargas, J., Hemmings, H.C., Nairn, A.C., Greengard, P.: Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14(2), 385–397 (1995)CrossRefGoogle Scholar
  18. 18.
    Gruber, A.J., Solla, S.A., Surmeier, D.J., Houk, J.C.: Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J. Neurophysiol. 90(2), 1095–1114 (2003)CrossRefGoogle Scholar
  19. 19.
    Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410 (1996)Google Scholar
  20. 20.
    Carter, A.G., Sabatini, B.L.: State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44(3), 483–493 (2004)CrossRefGoogle Scholar
  21. 21.
    Kerr, J.N.D., Plenz, D.: Action potential timing determines dendritic calcium during striatal up-states. J. Neurosci. 24(4), 877–885 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Takashi Nakano
    • 1
    • 2
  • Junichiro Yoshimoto
    • 1
    • 2
  • Jeff Wickens
    • 2
  • Kenji Doya
    • 1
    • 2
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyNaraJapan
  2. 2.Initial Research ProjectOkinawa Institute of Science and TechnologyOkinawaJapan

Personalised recommendations