Skip to main content

Optimizing Generic Neural Microcircuits through Reward Modulated STDP

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

How can we characterize if a given neural circuit is optimal for the class of computational operations that it has to perform on a certain input distribution? We show that modifying the efficacies of recurrent synapses in a generic neural microcircuit via spike timing dependent plasticity (STDP) can optimize the circuit in an unsupervised fashion for a particular input distribution if STDP is modulated by a global reward signal. More precisely, optimizing microcircuits through reward modulated STDP leads to a lower eigen-value spread of the cross-correlation matrix, higher entropy, highly decorrelated neural activity, and tunes the circuit dynamics to a regime that requires a large number of principal components for representing the information contained in the liquid state as compared to randomly drawn microcircuits. Another set of results show that such optimization brings the mean firing rate into a realistic regime, while increasing the sparseness and the information content of the network. We also show that the performance of optimized circuits improves for several linear and non-linear tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeger, H., Maass, W., Principe, J.: Special issue on Echo State Networks and Liquid State Machines. Neural Networks 20, 287–289 (2007)

    Article  Google Scholar 

  2. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  3. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  4. Jaeger, H.: Reservoir riddles: Suggestions for Echo State Network research. In: IJCNN, pp. 1460–1462 (2005)

    Google Scholar 

  5. Lazar, A., Pipa, G., Triesch, J.: Fading memory and time series prediction in recurrent networks with different forms of plasticity. Neural Networks 20, 312–322 (2007)

    Article  MATH  Google Scholar 

  6. Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J., Stroobandt, D.: Improving reservoirs using intrinsic plasticity. Neurocomputing 71, 1159–1171 (2008)

    Article  Google Scholar 

  7. Gupta, A., Wang, Y., Markram, H.: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

    Article  Google Scholar 

  8. Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. PNAS 95, 5323–5328 (1998)

    Article  Google Scholar 

  9. Buonomano, D.V., Merzenich, M.M.: Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028–1030 (1995)

    Article  Google Scholar 

  10. Maass, W., Markram, H.: On the computational power of recurrent circuits of spiking neurons. Journal of Computer and System Sciences 69(4), 593–616 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical microcircuits. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  12. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. PLOS Computational Biology 3(1), e165, 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  13. Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural Computation 17(8), 1715–1738 (2005)

    Article  MATH  Google Scholar 

  14. Joshi, P.: From memory based decisions to decision based movements: A model of interval discrimination followed by action selection. Neural Networks 20, 298–311 (2007)

    Article  MATH  Google Scholar 

  15. Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)

    Article  Google Scholar 

  16. Billimoria, C.P., Kraus, B.J., Narayan, R., Maddox, R.K., Sen, K.: Invariance and sensitivity to intensity in neural discrimination of natural sounds. Jour. of Neurosc. 28(25), 6304–6308 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joshi, P., Triesch, J. (2009). Optimizing Generic Neural Microcircuits through Reward Modulated STDP. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics