Advertisement

Multiple Sound Source Localisation in Reverberant Environments Inspired by the Auditory Midbrain

  • Jindong Liu
  • David Perez-Gonzalez
  • Adrian Rees
  • Harry Erwin
  • Stefan Wermter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)

Abstract

This paper proposes a spiking neural network (SNN) of the mammalian auditory midbrain to achieve binaural multiple sound source localisation. The network is inspired by neurophysiological studies on the organisation of binaural processing in the medial superior olive (MSO), lateral superior olive (LSO) and the inferior colliculus (IC) to achieve a sharp azimuthal localisation of sound sources over a wide frequency range in a reverberant environment. Three groups of artificial neurons are constructed to represent the neurons in the MSO, LSO and IC that are sensitive to interaural time difference (ITD), interaural level difference (ILD) and azimuth angle respectively. The ITD and ILD cues are combined in the IC to estimate the azimuth direction of a sound source. To deal with echo, we propose an inter-inhibited onset network in the IC, which can extract the azimuth information from the direct path sound and avoid the effects of reverberation. Experiments show that the proposed onset cell network can localise two sound sources efficiently taking into account the room reverberation.

Keywords

Spiking neural network sound localisation inferior colliculus reverberation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bronkhorst, A., Plomp, R.: Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. The Journal of the Acoustical Society of America 92, 3132–3139 (1992)CrossRefGoogle Scholar
  2. 2.
    Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge (1997)Google Scholar
  3. 3.
    Jeffress, L.: A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948)CrossRefGoogle Scholar
  4. 4.
    Moore, B.: An Introduction to the Psychology of Hearing. Academic Press, San Diego (2003)Google Scholar
  5. 5.
    Yin, T.: Neural mechanisms of encoding binaural localization cues in the auditory brainstem. Integrative Functions in the Mammalian Auditory Pathway I, 99–159 (2002)CrossRefGoogle Scholar
  6. 6.
    Willert, V., Eggert, J., Adamy, J., Stahl, R., Koerner, E.: A probabilistic model for binaural sound localization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(5), 982–994 (2006)CrossRefGoogle Scholar
  7. 7.
    Voutsas, K., Adamy, J.: A biologically inspired spiking neural network for sound source lateralization. IEEE Trans. Neural Networks 18(6), 1785–1799 (2007)CrossRefGoogle Scholar
  8. 8.
    Litovsky, R., Colburn, H., Yost, W., Guzman, S.: The precedence effect. Journal of the Acoustical Society of America 106(4 I), 1633–1654 (1999)CrossRefGoogle Scholar
  9. 9.
    Palomäki, K., Brown, G., Wang, D.: A binaural processor for missing data speech recognition in the presence of noise and small-room reverberation. Speech Communication 43(4), 361–378 (2004)CrossRefGoogle Scholar
  10. 10.
    Sivaramakrishnan, S., Oliver, D.: Distinct K Currents Result in Physiologically Distinct Cell Types in the Inferior Colliculus of the Rat. Journal of Neuroscience 21(8), 2861 (2001)Google Scholar
  11. 11.
    Slaney, M.: An efficient implementation of the patterson-holdsworth auditory filter bank. Apple Computer Technical Report 35 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jindong Liu
    • 1
  • David Perez-Gonzalez
    • 2
  • Adrian Rees
    • 2
  • Harry Erwin
    • 1
  • Stefan Wermter
    • 1
  1. 1.Dept. of Computing and TechnologyUniversity of SunderlandSunderlandUnited Kingdom
  2. 2.Institute of Neuroscience, The Medical SchoolNewcastle UniversityUnited Kingdom

Personalised recommendations